-
1
-
-
85038933157
-
-
See, e.g., Non-Stoichiometric Compounds: Surfaces, Grain Boundaries and Structural Defects, Vol. 276 of NATO Advanced Study Institute Series C: Mathematical and Physical Sciences, edited by J. Nowotny and W. Weppner (Kluwer, Dordrecht, 1989)
-
See, e.g., Non-Stoichiometric Compounds: Surfaces, Grain Boundaries and Structural Defects, Vol. 276 of NATO Advanced Study Institute Series C: Mathematical and Physical Sciences, edited by J. Nowotny and W. Weppner (Kluwer, Dordrecht, 1989).
-
-
-
-
8
-
-
0000369155
-
-
H. Terauchi and J. B. Cohen, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 34, 556 (1978).
-
(1978)
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
, vol.34
, pp. 556
-
-
Terauchi, H.1
Cohen, J.B.2
-
9
-
-
0000017239
-
-
S. Bartkowski, M. Neumann, E. Z. Kurmaev, V. V. Fedorenko, S. N. Shamin, V. M. Cherkashenko, S. N. Nemnonov, A. Winiarski and D. C. Rubie, Phys. Rev. B 56, 10 656 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 10
-
-
Bartkowski, S.1
Neumann, M.2
Kurmaev, E.Z.3
Fedorenko, V.V.4
Shamin, S.N.5
Cherkashenko, V.M.6
Nemnonov, S.N.7
Winiarski, A.8
Rubie, D.C.9
-
15
-
-
0029393427
-
-
I. Manassidis, J. Goniakowski, L. N. Kantorovich, and M. J. Gillan, Surf. Sci. 339, 258 (1995).
-
(1995)
Surf. Sci.
, vol.339
, pp. 258
-
-
Manassidis, I.1
Goniakowski, J.2
Kantorovich, L.N.3
Gillan, M.J.4
-
16
-
-
0003652232
-
-
Kluwer, Dordrecht R. M. Lambert G. Pacchioni
-
C. Noguera, A. Pojani, F. Finocchi and J. Goniakowski, in Chemisorption and Reactivity on Supported Clusters and Thin Films, Vol. 331 of NATO Advanced Study Institute, Series E: Applied Sciences, edited by R. M. Lambert and G. Pacchioni (Kluwer, Dordrecht, 1997), p. 455.
-
(1997)
Chemisorption and Reactivity on Supported Clusters and Thin Films, Vol. 331 of NATO Advanced Study Institute, Series E: Applied Sciences
, pp. 455
-
-
Noguera, C.1
Pojani, A.2
Finocchi, F.3
Goniakowski, J.4
-
19
-
-
0001300225
-
-
P. J. Hardman, N. S. Prakash, C. A. Muryn, G. N. Raikar, A. G. Thomas, A. F. Prime, G. Thornton, and R. J. Blake, Phys. Rev. B 47, 16 056 (1993).
-
(1993)
Phys. Rev. B
, vol.47
, pp. 16
-
-
Hardman, P.J.1
Prakash, N.S.2
Muryn, C.A.3
Raikar, G.N.4
Thomas, A.G.5
Prime, A.F.6
Thornton, G.7
Blake, R.J.8
-
20
-
-
0028700036
-
-
P. W. Murray, F. M. Leibsle, C. A. Muryn, H. J. Fischer, C. F. J. Flipse, and G. Thornton, Surf. Sci. 321, 217 (1994).
-
(1994)
Surf. Sci.
, vol.321
, pp. 217
-
-
Murray, P.W.1
Leibsle, F.M.2
Muryn, C.A.3
Fischer, H.J.4
Flipse, C.F.J.5
Thornton, G.6
-
21
-
-
4243754786
-
-
P. W. Murray, F. M. Leibsle, C. A. Muryn, H. J. Fisher, C. F. J. Flipse, and G. Thornton, Phys. Rev. Lett. 72, 689 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 689
-
-
Murray, P.W.1
Leibsle, F.M.2
Muryn, C.A.3
Fisher, H.J.4
Flipse, C.F.J.5
Thornton, G.6
-
25
-
-
0026944671
-
-
T. Matsumoto, H. Tanaka, T. Kawai, and S. Kawai, Surf. Sci. Lett. 278, L153 (1992).
-
(1992)
Surf. Sci. Lett.
, vol.278
-
-
Matsumoto, T.1
Tanaka, H.2
Kawai, T.3
Kawai, S.4
-
27
-
-
0028516830
-
-
H. Tanaka, T. Matsumoto, T. Kawai, and S. Kawai, Surf. Sci. 318, 29 (1994).
-
(1994)
Surf. Sci.
, vol.318
, pp. 29
-
-
Tanaka, H.1
Matsumoto, T.2
Kawai, T.3
Kawai, S.4
-
30
-
-
0022059685
-
-
S. Baik, D. E. Fowler, J. M. Blakely, and R. Raj, J. Am. Ceram. Soc. 68, 281 (1985).
-
(1985)
J. Am. Ceram. Soc.
, vol.68
, pp. 281
-
-
Baik, S.1
Fowler, D.E.2
Blakely, J.M.3
Raj, R.4
-
31
-
-
0026413924
-
-
M. Gautier, J. P. Duraud, L. Pham Van, and M. J. Guittet, Surf. Sci. 250, 71 (1991).
-
(1991)
Surf. Sci.
, vol.250
, pp. 71
-
-
Gautier, M.1
Duraud, J.P.2
Pham Van, L.3
Guittet, M.J.4
-
32
-
-
0028383033
-
-
M. Gautier, G. Renaud, L. Pham Van, B. Villette, M. Pollak, N. Thromat, F. Jollet, and J. P. Duraud, J. Am. Ceram. Soc. 77, 323 (1994).
-
(1994)
J. Am. Ceram. Soc.
, vol.77
, pp. 323
-
-
Gautier, M.1
Renaud, G.2
Pham Van, L.3
Villette, B.4
Pollak, M.5
Thromat, N.6
Jollet, F.7
Duraud, J.P.8
-
33
-
-
0000012251
-
-
G. Renaud, B. Villette, I. Vilfan, and A. Bourret, Phys. Rev. Lett. 73, 1825 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 1825
-
-
Renaud, G.1
Villette, B.2
Vilfan, I.3
Bourret, A.4
-
46
-
-
0001021344
-
-
Phys. Rev. Bdetails of the calculation for the perfect MgO(100) surface are given in J. Goniakowski, 57, 1935 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 1935
-
-
Goniakowski, J.1
-
48
-
-
85038959202
-
-
J. Vac. Sci. Technol. (to be published)
-
D. Ferry, J. Suzanne, V. Panella, A. Barbieri, M. A. Van Hove, and J. P. Bibérian, J. Vac. Sci. Technol. (to be published).
-
-
-
Ferry, D.1
Suzanne, J.2
Panella, V.3
Barbieri, A.4
Van Hove, M.A.5
Bibérian, J.P.6
-
49
-
-
85038908232
-
-
The convergence tests were performed on the (Formula presented) configuration, characterized by the largest dispersion of the vacancy band and no overlap with the conduction band, which thus should suffer from the largest errors. For this configuration, the formation energy (no atomic relaxation) amounts to 10.42 eV when sampling the Brillouin zone corresponding to the (Formula presented) with the (Formula presented) point, and to 10.25, 10.28, and 10.29 eV for the (Formula presented) surface unit cell by using one, three, and ten special k points in the irreducible part of the BZ, respectively. We thus take 0.1 eV as an estimation of the BZ sampling-induced error of the calculated formation/interaction energies, and in the following we will give the calculated vacancy formation/interaction energetics with only one-digit precision
-
The convergence tests were performed on the (Formula presented) configuration, characterized by the largest dispersion of the vacancy band and no overlap with the conduction band, which thus should suffer from the largest errors. For this configuration, the formation energy (no atomic relaxation) amounts to 10.42 eV when sampling the Brillouin zone corresponding to the (Formula presented) with the (Formula presented) point, and to 10.25, 10.28, and 10.29 eV for the (Formula presented) surface unit cell by using one, three, and ten special k points in the irreducible part of the BZ, respectively. We thus take 0.1 eV as an estimation of the BZ sampling-induced error of the calculated formation/interaction energies, and in the following we will give the calculated vacancy formation/interaction energetics with only one-digit precision.
-
-
-
-
50
-
-
85038968630
-
-
(private communication)
-
V. Kempter (private communication).
-
-
-
Kempter, V.1
-
51
-
-
85038914719
-
-
this calculation, the gap width is equal to 5.5 eV, an underestimated value due to the use of DFT
-
In this calculation, the gap width is equal to 5.5 eV, an underestimated value due to the use of DFT.
-
-
-
-
55
-
-
0021037436
-
-
Y. Oishi, K. Ando, H. Kurokawa, and Y. Hiro, J. Am. Ceram. Soc. 66, C60 (1983).
-
(1983)
J. Am. Ceram. Soc.
, vol.66
-
-
Oishi, Y.1
Ando, K.2
Kurokawa, H.3
Hiro, Y.4
-
57
-
-
0002216220
-
-
E. A. Kotomin, M. M. Kuklja, R. I. Eglitis, and A. I. Popov, Mater. Sci. Eng. B 37, 212 (1996).
-
(1996)
Mater. Sci. Eng. B
, vol.37
, pp. 212
-
-
Kotomin, E.A.1
Kuklja, M.M.2
Eglitis, R.I.3
Popov, A.I.4
-
60
-
-
0000307223
-
-
)], a definite conclusion on this point requires to treating not only valence electrons but also core electrons in the GGA approximation. However, in this system, the core polarization should be very weak
-
As shown recently [M. Fuchs, et al., Phys. Rev. B 57, 2134 (1998)], a definite conclusion on this point requires to treating not only valence electrons but also core electrons in the GGA approximation. However, in this system, the core polarization should be very weak.
-
(1998)
Phys. Rev. B
, vol.57
, pp. 2134
-
-
Fuchs, M.1
|