-
1
-
-
0042041214
-
-
M. Ringger, H. R. Hidber, R. Schögl, P. Oelhafen, and H.-J. Güntherodt, Appl. Phys. Lett. 46, 832 (1985).
-
(1985)
Appl. Phys. Lett.
, vol.46
, pp. 832
-
-
Ringger, M.1
Hidber, H.R.2
Schögl, R.3
Oelhafen, P.4
Güntherodt, H.-J.5
-
4
-
-
0000576486
-
-
M. McEllistrem, G. Haase, D. Chen, and R. J. Hamers, Phys. Rev. Lett. 70, 2471 (1993).
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 2471
-
-
McEllistrem, M.1
Haase, G.2
Chen, D.3
Hamers, R.J.4
-
5
-
-
0001122679
-
-
R. J. Hamers and K. Market, Phys. Rev. Lett. 64, 1051 (1990); Y. Kuk, R. S. Becker, P. J. Silverman, and G. P. Kochanski, Phys. Rev. Lett. 65, 456 (1990).
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 1051
-
-
Hamers, R.J.1
Market, K.2
-
6
-
-
0001255560
-
-
R. J. Hamers and K. Market, Phys. Rev. Lett. 64, 1051 (1990); Y. Kuk, R. S. Becker, P. J. Silverman, and G. P. Kochanski, Phys. Rev. Lett. 65, 456 (1990).
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 456
-
-
Kuk, Y.1
Becker, R.S.2
Silverman, P.J.3
Kochanski, G.P.4
-
7
-
-
0038534884
-
-
S.-T. Yau, D. Saltz, and M. H. Nayfeh, Appl. Phys. Lett. 57, 2913 (1990); J. Vac. Sci. Technol. B 9, 1371 (1991).
-
(1990)
Appl. Phys. Lett.
, vol.57
, pp. 2913
-
-
Yau, S.-T.1
Saltz, D.2
Nayfeh, M.H.3
-
8
-
-
0038534884
-
-
S.-T. Yau, D. Saltz, and M. H. Nayfeh, Appl. Phys. Lett. 57, 2913 (1990); J. Vac. Sci. Technol. B 9, 1371 (1991).
-
(1991)
J. Vac. Sci. Technol. B
, vol.9
, pp. 1371
-
-
-
10
-
-
0026953336
-
-
L. L. Kazmerski, J. Vac. Sci. Technol. B 9, 1549 (1991); Vacuum 43, 1011 (1992).
-
(1992)
Vacuum
, vol.43
, pp. 1011
-
-
-
12
-
-
36449003280
-
-
E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, Appl. Phys. Lett. 61, 142 (1992).
-
(1992)
Appl. Phys. Lett.
, vol.61
, pp. 142
-
-
Betzig, E.1
Trautman, J.K.2
Wolfe, R.3
Gyorgy, E.M.4
Finn, P.L.5
Kryder, M.H.6
Chang, C.-H.7
-
17
-
-
85033032340
-
-
note
-
This 50% discrepancy is mostly a systematic overestimation of the transferred charge, which has no significant impact on the conclusions of the study.
-
-
-
-
18
-
-
85033007751
-
-
note
-
Another feature, a local minimum in the transient current exists at positive sample bias of ∼0.5 V. This local minimum is not seen in Fig. 2, which shows accumulative data averaged over different up conditions and various surface sites (long, more than 2 h, data collection). The presence of the minimum is apparent with a rapid scan (∼5-10 s) over limited positive sample biases (for instance, from 0.1 to 0.7 V). The data are not presented.
-
-
-
-
20
-
-
0000050412
-
-
N. M. Miskovsky, S. H. Park, J. He, and P. H. Cutler, J. Vac. Sci. Technol. B 11, 366 (1993).
-
(1993)
J. Vac. Sci. Technol. B
, vol.11
, pp. 366
-
-
Miskovsky, N.M.1
Park, S.H.2
He, J.3
Cutler, P.H.4
-
21
-
-
85033023604
-
-
note
-
th/3 Ω, where Ω is the tip cone solid angle.
-
-
-
-
22
-
-
21444460118
-
-
Wiley, New York
-
This estimation of the absorbed laser energy is a crude approximation. The size of the tip apex is comparable with the laser wavelength of 5320 Å. Therefore, macroscopic or geometrical optics is not applicable to the case anymore. The laser energy absorbed by the tip should be calculated then by using the theory of light scattering and with knowledge of the exact geometry of the tip-surface junction [see, for example, C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) or M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, New York, 1968)]. Moreover, the situation may be complicated by the surface polariton generation and various waveguide effects [see, for example, Surface Polaritons, edited by V. M. Agranovich and D. L. Mills (Elsevier, Amsterdam, 1982)]. To the best of our knowledge this complex problem has not been solved. At the present moment, we restrict ourselves by this simplified approach that we believe still gives a correct order of magnitude estimation. The possible laser intensity increase in the tip-sample junction is considered in Appendix B.
-
(1983)
Absorption and Scattering of Light by Small Particles
-
-
Bohren, C.F.1
Huffman, D.R.2
-
23
-
-
0003972070
-
-
Pergamon, New York
-
This estimation of the absorbed laser energy is a crude approximation. The size of the tip apex is comparable with the laser wavelength of 5320 Å. Therefore, macroscopic or geometrical optics is not applicable to the case anymore. The laser energy absorbed by the tip should be calculated then by using the theory of light scattering and with knowledge of the exact geometry of the tip-surface junction [see, for example, C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) or M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, New York, 1968)]. Moreover, the situation may be complicated by the surface polariton generation and various waveguide effects [see, for example, Surface Polaritons, edited by V. M. Agranovich and D. L. Mills (Elsevier, Amsterdam, 1982)]. To the best of our knowledge this complex problem has not been solved. At the present moment, we restrict ourselves by this simplified approach that we believe still gives a correct order of magnitude estimation. The possible laser intensity increase in the tip-sample junction is considered in Appendix B.
-
(1968)
Principles of Optics, 4th Ed.
-
-
Born, M.1
Wolf, E.2
-
24
-
-
0004148819
-
-
Elsevier, Amsterdam
-
This estimation of the absorbed laser energy is a crude approximation. The size of the tip apex is comparable with the laser wavelength of 5320 Å. Therefore, macroscopic or geometrical optics is not applicable to the case anymore. The laser energy absorbed by the tip should be calculated then by using the theory of light scattering and with knowledge of the exact geometry of the tip-surface junction [see, for example, C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) or M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, New York, 1968)]. Moreover, the situation may be complicated by the surface polariton generation and various waveguide effects [see, for example, Surface Polaritons, edited by V. M. Agranovich and D. L. Mills (Elsevier, Amsterdam, 1982)]. To the best of our knowledge this complex problem has not been solved. At the present moment, we restrict ourselves by this simplified approach that we believe still gives a correct order of magnitude estimation. The possible laser intensity increase in the tip-sample junction is considered in Appendix B.
-
(1982)
Surface Polaritons
-
-
Agranovich, V.M.1
Mills, D.L.2
-
25
-
-
85033002736
-
-
note
-
The situation is similar to a one-dimensional thermal expansion of an infinite surface layer.
-
-
-
-
28
-
-
0028493221
-
-
J. B. Xu, K. Läuger, R. Möller, K. Dransfeld, and I. H. Wilson, Appl. Phys. A 59, 155 (1994); J. B. Xu, K. Läuger, R. Möller, K. Dransfeld, and C. C. Williams, in Nanosources and Manipulation of Atoms Under High Fields and Temperatures: Applications, edited by V. T. Binh et al. (Kluwer Academic, The Netherlands, 1993), p. 89.
-
(1994)
Appl. Phys. A
, vol.59
, pp. 155
-
-
Xu, J.B.1
Läuger, K.2
Möller, R.3
Dransfeld, K.4
Wilson, I.H.5
-
29
-
-
0004080095
-
-
edited by V. T. Binh et al. Kluwer Academic, The Netherlands
-
J. B. Xu, K. Läuger, R. Möller, K. Dransfeld, and I. H. Wilson, Appl. Phys. A 59, 155 (1994); J. B. Xu, K. Läuger, R. Möller, K. Dransfeld, and C. C. Williams, in Nanosources and Manipulation of Atoms Under High Fields and Temperatures: Applications, edited by V. T. Binh et al. (Kluwer Academic, The Netherlands, 1993), p. 89.
-
(1993)
Nanosources and Manipulation of Atoms under High Fields and Temperatures: Applications
, pp. 89
-
-
Xu, J.B.1
Läuger, K.2
Möller, R.3
Dransfeld, K.4
Williams, C.C.5
-
32
-
-
33645620497
-
-
Ph. Buffat and J-P. Borel, Phys. Rev. A 13, 2287 (1976); T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, Surf. Sci. 234, 43 (1990).
-
(1976)
Phys. Rev. A
, vol.13
, pp. 2287
-
-
Buffat, Ph.1
Borel, J.-P.2
-
33
-
-
0002542566
-
-
Ph. Buffat and J-P. Borel, Phys. Rev. A 13, 2287 (1976); T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, Surf. Sci. 234, 43 (1990).
-
(1990)
Surf. Sci.
, vol.234
, pp. 43
-
-
Castro, T.1
Reifenberger, R.2
Choi, E.3
Andres, R.P.4
-
34
-
-
0001157957
-
-
T. T. Tsong, Phys. Rev. B 44, 13703 (1991); N. M. Miskovsky, T. T. Tsong, and C. M. Wei, in Nanosources and Manipulation of Atoms Under High Fields and Temperatures: Applications, edited by V. T. Binh et al. (Kluwer Academic, The Netherlands, 1993), p. 207; N. D. Lang, ibid., p. 177.
-
(1991)
Phys. Rev. B
, vol.44
, pp. 13703
-
-
Tsong, T.T.1
-
35
-
-
6144246841
-
-
edited by V. T. Binh et al. Kluwer Academic, The Netherlands
-
T. T. Tsong, Phys. Rev. B 44, 13703 (1991); N. M. Miskovsky, T. T. Tsong, and C. M. Wei, in Nanosources and Manipulation of Atoms Under High Fields and Temperatures: Applications, edited by V. T. Binh et al. (Kluwer Academic, The Netherlands, 1993), p. 207; N. D. Lang, ibid., p. 177.
-
(1993)
Nanosources and Manipulation of Atoms under High Fields and Temperatures: Applications
, pp. 207
-
-
Miskovsky, N.M.1
Tsong, T.T.2
Wei, C.M.3
-
36
-
-
0004080095
-
-
T. T. Tsong, Phys. Rev. B 44, 13703 (1991); N. M. Miskovsky, T. T. Tsong, and C. M. Wei, in Nanosources and Manipulation of Atoms Under High Fields and Temperatures: Applications, edited by V. T. Binh et al. (Kluwer Academic, The Netherlands, 1993), p. 207; N. D. Lang, ibid., p. 177.
-
Nanosources and Manipulation of Atoms under High Fields and Temperatures: Applications
, pp. 177
-
-
Lang, N.D.1
-
40
-
-
0028426586
-
-
J. R. Goldman and J. A. Prybyla, Phys. Rev. Lett. 72, 1364 (1994); Semicond. Sci. Technol. 9, 694 (1994).
-
(1994)
Semicond. Sci. Technol.
, vol.9
, pp. 694
-
-
-
42
-
-
11944268652
-
-
J. P. Long, H. R. Sadeghi, J. C. Rife, and M. N. Kabler, Phys. Rev. Lett. 64, 1158 (1990).
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 1158
-
-
Long, J.P.1
Sadeghi, H.R.2
Rife, J.C.3
Kabler, M.N.4
-
45
-
-
0004101795
-
-
Elsevier, Amsterdam, Chap. 9
-
D∼1 Å and hence, the photocurrent should be dramatically reduced [E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Elsevier, Amsterdam, 1979), Chap. 9]. Nevertheless, the high initial photocurrent evidently (Ref. 25) plays a crucial role in the SCL formation and pumps the surface electron density to this high value.
-
(1979)
Physical Kinetics
-
-
Lifshitz, E.M.1
Pitaevskii, L.P.2
-
46
-
-
36549091231
-
-
A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 49, 674 (1986); 51, 2088 (1987); J. A. Cline, H. Barshatzky, and M. Isaacson, Ultramicroscopy 38, 299 (1991).
-
(1986)
Appl. Phys. Lett.
, vol.49
, pp. 674
-
-
Harootunian, A.1
Betzig, E.2
Isaacson, M.3
Lewis, A.4
-
47
-
-
21544478321
-
-
A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 49, 674 (1986); 51, 2088 (1987); J. A. Cline, H. Barshatzky, and M. Isaacson, Ultramicroscopy 38, 299 (1991).
-
(1987)
Appl. Phys. Lett.
, vol.51
, pp. 2088
-
-
-
48
-
-
0026322196
-
-
A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 49, 674 (1986); 51, 2088 (1987); J. A. Cline, H. Barshatzky, and M. Isaacson, Ultramicroscopy 38, 299 (1991).
-
(1991)
Ultramicroscopy
, vol.38
, pp. 299
-
-
Cline, J.A.1
Barshatzky, H.2
Isaacson, M.3
|