메뉴 건너뛰기




Volumn 80, Issue 5, 1996, Pages 2561-2571

Nanosecond laser induced single atom deposition with nanometer spatial resolution using a STM

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001404823     PISSN: 00218979     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.363171     Document Type: Article
Times cited : (63)

References (48)
  • 5
    • 0001122679 scopus 로고
    • R. J. Hamers and K. Market, Phys. Rev. Lett. 64, 1051 (1990); Y. Kuk, R. S. Becker, P. J. Silverman, and G. P. Kochanski, Phys. Rev. Lett. 65, 456 (1990).
    • (1990) Phys. Rev. Lett. , vol.64 , pp. 1051
    • Hamers, R.J.1    Market, K.2
  • 8
    • 0038534884 scopus 로고
    • S.-T. Yau, D. Saltz, and M. H. Nayfeh, Appl. Phys. Lett. 57, 2913 (1990); J. Vac. Sci. Technol. B 9, 1371 (1991).
    • (1991) J. Vac. Sci. Technol. B , vol.9 , pp. 1371
  • 10
    • 0026953336 scopus 로고
    • L. L. Kazmerski, J. Vac. Sci. Technol. B 9, 1549 (1991); Vacuum 43, 1011 (1992).
    • (1992) Vacuum , vol.43 , pp. 1011
  • 17
    • 85033032340 scopus 로고    scopus 로고
    • note
    • This 50% discrepancy is mostly a systematic overestimation of the transferred charge, which has no significant impact on the conclusions of the study.
  • 18
    • 85033007751 scopus 로고    scopus 로고
    • note
    • Another feature, a local minimum in the transient current exists at positive sample bias of ∼0.5 V. This local minimum is not seen in Fig. 2, which shows accumulative data averaged over different up conditions and various surface sites (long, more than 2 h, data collection). The presence of the minimum is apparent with a rapid scan (∼5-10 s) over limited positive sample biases (for instance, from 0.1 to 0.7 V). The data are not presented.
  • 21
    • 85033023604 scopus 로고    scopus 로고
    • note
    • th/3 Ω, where Ω is the tip cone solid angle.
  • 22
    • 21444460118 scopus 로고
    • Wiley, New York
    • This estimation of the absorbed laser energy is a crude approximation. The size of the tip apex is comparable with the laser wavelength of 5320 Å. Therefore, macroscopic or geometrical optics is not applicable to the case anymore. The laser energy absorbed by the tip should be calculated then by using the theory of light scattering and with knowledge of the exact geometry of the tip-surface junction [see, for example, C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) or M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, New York, 1968)]. Moreover, the situation may be complicated by the surface polariton generation and various waveguide effects [see, for example, Surface Polaritons, edited by V. M. Agranovich and D. L. Mills (Elsevier, Amsterdam, 1982)]. To the best of our knowledge this complex problem has not been solved. At the present moment, we restrict ourselves by this simplified approach that we believe still gives a correct order of magnitude estimation. The possible laser intensity increase in the tip-sample junction is considered in Appendix B.
    • (1983) Absorption and Scattering of Light by Small Particles
    • Bohren, C.F.1    Huffman, D.R.2
  • 23
    • 0003972070 scopus 로고
    • Pergamon, New York
    • This estimation of the absorbed laser energy is a crude approximation. The size of the tip apex is comparable with the laser wavelength of 5320 Å. Therefore, macroscopic or geometrical optics is not applicable to the case anymore. The laser energy absorbed by the tip should be calculated then by using the theory of light scattering and with knowledge of the exact geometry of the tip-surface junction [see, for example, C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) or M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, New York, 1968)]. Moreover, the situation may be complicated by the surface polariton generation and various waveguide effects [see, for example, Surface Polaritons, edited by V. M. Agranovich and D. L. Mills (Elsevier, Amsterdam, 1982)]. To the best of our knowledge this complex problem has not been solved. At the present moment, we restrict ourselves by this simplified approach that we believe still gives a correct order of magnitude estimation. The possible laser intensity increase in the tip-sample junction is considered in Appendix B.
    • (1968) Principles of Optics, 4th Ed.
    • Born, M.1    Wolf, E.2
  • 24
    • 0004148819 scopus 로고
    • Elsevier, Amsterdam
    • This estimation of the absorbed laser energy is a crude approximation. The size of the tip apex is comparable with the laser wavelength of 5320 Å. Therefore, macroscopic or geometrical optics is not applicable to the case anymore. The laser energy absorbed by the tip should be calculated then by using the theory of light scattering and with knowledge of the exact geometry of the tip-surface junction [see, for example, C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983) or M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, New York, 1968)]. Moreover, the situation may be complicated by the surface polariton generation and various waveguide effects [see, for example, Surface Polaritons, edited by V. M. Agranovich and D. L. Mills (Elsevier, Amsterdam, 1982)]. To the best of our knowledge this complex problem has not been solved. At the present moment, we restrict ourselves by this simplified approach that we believe still gives a correct order of magnitude estimation. The possible laser intensity increase in the tip-sample junction is considered in Appendix B.
    • (1982) Surface Polaritons
    • Agranovich, V.M.1    Mills, D.L.2
  • 25
    • 85033002736 scopus 로고    scopus 로고
    • note
    • The situation is similar to a one-dimensional thermal expansion of an infinite surface layer.
  • 28
    • 0028493221 scopus 로고
    • J. B. Xu, K. Läuger, R. Möller, K. Dransfeld, and I. H. Wilson, Appl. Phys. A 59, 155 (1994); J. B. Xu, K. Läuger, R. Möller, K. Dransfeld, and C. C. Williams, in Nanosources and Manipulation of Atoms Under High Fields and Temperatures: Applications, edited by V. T. Binh et al. (Kluwer Academic, The Netherlands, 1993), p. 89.
    • (1994) Appl. Phys. A , vol.59 , pp. 155
    • Xu, J.B.1    Läuger, K.2    Möller, R.3    Dransfeld, K.4    Wilson, I.H.5
  • 32
    • 33645620497 scopus 로고
    • Ph. Buffat and J-P. Borel, Phys. Rev. A 13, 2287 (1976); T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, Surf. Sci. 234, 43 (1990).
    • (1976) Phys. Rev. A , vol.13 , pp. 2287
    • Buffat, Ph.1    Borel, J.-P.2
  • 34
    • 0001157957 scopus 로고
    • T. T. Tsong, Phys. Rev. B 44, 13703 (1991); N. M. Miskovsky, T. T. Tsong, and C. M. Wei, in Nanosources and Manipulation of Atoms Under High Fields and Temperatures: Applications, edited by V. T. Binh et al. (Kluwer Academic, The Netherlands, 1993), p. 207; N. D. Lang, ibid., p. 177.
    • (1991) Phys. Rev. B , vol.44 , pp. 13703
    • Tsong, T.T.1
  • 40
    • 0028426586 scopus 로고
    • J. R. Goldman and J. A. Prybyla, Phys. Rev. Lett. 72, 1364 (1994); Semicond. Sci. Technol. 9, 694 (1994).
    • (1994) Semicond. Sci. Technol. , vol.9 , pp. 694
  • 45
    • 0004101795 scopus 로고
    • Elsevier, Amsterdam, Chap. 9
    • D∼1 Å and hence, the photocurrent should be dramatically reduced [E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Elsevier, Amsterdam, 1979), Chap. 9]. Nevertheless, the high initial photocurrent evidently (Ref. 25) plays a crucial role in the SCL formation and pumps the surface electron density to this high value.
    • (1979) Physical Kinetics
    • Lifshitz, E.M.1    Pitaevskii, L.P.2
  • 47
    • 21544478321 scopus 로고
    • A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 49, 674 (1986); 51, 2088 (1987); J. A. Cline, H. Barshatzky, and M. Isaacson, Ultramicroscopy 38, 299 (1991).
    • (1987) Appl. Phys. Lett. , vol.51 , pp. 2088
  • 48
    • 0026322196 scopus 로고
    • A. Harootunian, E. Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 49, 674 (1986); 51, 2088 (1987); J. A. Cline, H. Barshatzky, and M. Isaacson, Ultramicroscopy 38, 299 (1991).
    • (1991) Ultramicroscopy , vol.38 , pp. 299
    • Cline, J.A.1    Barshatzky, H.2    Isaacson, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.