-
3
-
-
10144221146
-
-
Klinger, J., et al., Eds.; D. Reidel: Dordrecht, Holland
-
Cruikshank, D.; Brown, R.; Clark, R. In Ices in the Solar System; Klinger, J., et al., Eds.; D. Reidel: Dordrecht, Holland, 1985, 817-827.
-
(1985)
Ices in the Solar System
, pp. 817-827
-
-
Cruikshank, D.1
Brown, R.2
Clark, R.3
-
5
-
-
0000388862
-
-
Atreya, S. et al., Eds.; University of Arizona Press: Tucson
-
Prinn, R.; Fegley, B., Jr. In Origin and Evolution of Planetary and Satellite Atmospheres; Atreya, S. et al., Eds.; University of Arizona Press: Tucson, 1989, 78-136.
-
(1989)
Origin and Evolution of Planetary and Satellite Atmospheres
, pp. 78-136
-
-
Prinn, R.1
Fegley Jr., B.2
-
7
-
-
0024233957
-
-
Kvenvolden, K. Chem. Geol. 1988, 71, 41. Kvenvolden, K. Rev. Geophys. 1993, 31, 173.
-
(1988)
Chem. Geol.
, vol.71
, pp. 41
-
-
Kvenvolden, K.1
-
8
-
-
0027808041
-
-
Kvenvolden, K. Chem. Geol. 1988, 71, 41. Kvenvolden, K. Rev. Geophys. 1993, 31, 173.
-
(1993)
Rev. Geophys.
, vol.31
, pp. 173
-
-
Kvenvolden, K.1
-
9
-
-
0029744796
-
-
Stern, L.; Kirby, S.; Durham, W. Science 1996, 273, 1843.
-
(1996)
Science
, vol.273
, pp. 1843
-
-
Stern, L.1
Kirby, S.2
Durham, W.3
-
10
-
-
11744255215
-
-
note
-
The volume of an empy structure I hydrate lattice is 16% greater than the equivalent mass of ice I, regardless of hydrate stoichiometry (the empty structure I lattice has a density of 0.78, and stoichiometric methane hydrate has a density near ice; 0.90 vs 0.92 for ice). There is a large -ΔV associated with hydrate formation, however, due to the volume reduction of the gas phase into the hydrate structure. In our constant-volume temperature-ramping experiments, the volume change that accompanies reaction is reflected as a reduction in the rate of pressure increase due to thermal expansion alone (Figure 1B).
-
-
-
-
11
-
-
11744335744
-
-
note
-
2O in terms of the hydrate-forming reaction.
-
-
-
-
12
-
-
11744328258
-
-
note
-
Tests in which a coarser sized fraction of granular ice was used as starting material (1-2 mm, vs 200 μ, in standard runs) showed evidence for significant melt accumulation in the sample chamber during the heating cycle and were unsuccessful in producing bulk, granular aggregates of pure methane hydrate [Figure 6 in ref 8].
-
-
-
-
13
-
-
0032014680
-
-
Stern, L.; Kirby, S.; Durham, W. Energy Fuels 1998, 12, 201.
-
(1998)
Energy Fuels
, vol.12
, pp. 201
-
-
Stern, L.1
Kirby, S.2
Durham, W.3
-
17
-
-
3142513157
-
-
Aoyogi, K.; Song, K.; Kobayashi, R.; Sloan, E.; Dharmawardhana, P. Research Report No. 45; Gas Processors Association: Tulsa, OK, 1980
-
2 for full review of synthesis techniques.
-
-
-
-
18
-
-
0030863742
-
-
2O in the sample tube to hydrate, as well as the testing of hypotheses regarding continued growth of hydrate after the initial nucleation phase.
-
(1996)
Am. Mineral.
, vol.82
, pp. 88
-
-
Smelik, E.1
King Jr., H.2
-
19
-
-
11744374935
-
-
2O in the sample tube to hydrate, as well as the testing of hypotheses regarding continued growth of hydrate after the initial nucleation phase.
-
(1997)
Geology
, vol.25
, pp. 5
-
-
Brewer, P.1
Orr, L.2
Friederich, G.3
Kvenvolden, L.4
Orange, D.5
McFarlane, J.6
Kirkwood, W.7
-
20
-
-
0025226455
-
-
Chou, I.; Pasteris, J.; Seitz, J. Geochim. Cosmochim. Acta 1990, 54, 535.
-
(1990)
Geochim. Cosmochim. Acta
, vol.54
, pp. 535
-
-
Chou, I.1
Pasteris, J.2
Seitz, J.3
-
21
-
-
0002742046
-
-
Schmitt, B.; de Bergh, C.; Festou, M., Eds.; Kluwer Academic Publishers: Dordrecht; in press
-
2 vapor curve at a corresponding dissociation T of 283 K (see Figure 9 in the following: Ross, R.; Kargel, J. In Solar System Ices; Schmitt, B.; de Bergh, C.; Festou, M., Eds.; Kluwer Academic Publishers: Dordrecht; in press; also Takenouchi, S.; Kennedy, G. J. Geology 1965, 73, 383.)
-
Solar System Ices
-
-
Ross, R.1
Kargel, J.2
-
22
-
-
0001117629
-
-
2 vapor curve at a corresponding dissociation T of 283 K (see Figure 9 in the following: Ross, R.; Kargel, J. In Solar System Ices; Schmitt, B.; de Bergh, C.; Festou, M., Eds.; Kluwer Academic Publishers: Dordrecht; in press; also Takenouchi, S.; Kennedy, G. J. Geology 1965, 73, 383.)
-
(1965)
J. Geology
, vol.73
, pp. 383
-
-
Takenouchi, S.1
Kennedy, G.2
-
23
-
-
85086291201
-
-
note
-
2O vapor exists in the pore volume of the tube, most likely due to partial sublimation of the hydrate mantle encasing each ice grain. This sublimation process also explains why a significant grain size increase during ice conversion to hydrate is not observed [see ref 5].
-
-
-
-
24
-
-
45849086986
-
-
Results from measurable superheating in gold-plated silver single crystals (Daeges, J.; Gleiter, H.; Perepezko, J. Phys. Lett. 1986, 119A, 79), suggest that either a free external surface or internal defects such as dislocations are critical for bulk melting to take place at the normal melting point (Phillpot, S.; Lutsko, J.; Wolf, D., Yip, S. Phys. Rev. B 1989, 40, 2831. See also Phillpot, S.; Yip, S.; Wolf, D. Comput. Phys. 1989, 3, 20.)
-
(1986)
J. Phys. Lett.
, vol.119 A
, pp. 79
-
-
Daeges, J.1
Gleiter, H.2
Perepezko3
-
25
-
-
11644324093
-
-
Results from measurable superheating in gold-plated silver single crystals (Daeges, J.; Gleiter, H.; Perepezko, J. Phys. Lett. 1986, 119A, 79), suggest that either a free external surface or internal defects such as dislocations are critical for bulk melting to take place at the normal melting point (Phillpot, S.; Lutsko, J.; Wolf, D., Yip, S. Phys. Rev. B 1989, 40, 2831. See also Phillpot, S.; Yip, S.; Wolf, D. Comput. Phys. 1989, 3, 20.)
-
(1989)
Phys. Rev. B
, vol.40
, pp. 2831
-
-
Phillpot, S.1
Lutsko, J.2
Wolf, D.3
Yip, S.4
-
26
-
-
0002960608
-
-
Results from measurable superheating in gold-plated silver single crystals (Daeges, J.; Gleiter, H.; Perepezko, J. Phys. Lett. 1986, 119A, 79), suggest that either a free external surface or internal defects such as dislocations are critical for bulk melting to take place at the normal melting point (Phillpot, S.; Lutsko, J.; Wolf, D., Yip, S. Phys. Rev. B 1989, 40, 2831. See also Phillpot, S.; Yip, S.; Wolf, D. Comput. Phys. 1989, 3, 20.)
-
(1989)
Comput. Phys.
, vol.3
, pp. 20
-
-
Phillpot, S.1
Yip, S.2
Wolf, D.3
-
27
-
-
0000032549
-
-
"Premelting" of the ice grains (see reviews by Dash, J.; Fu, H.; Wettlaufer, J. Rep. Prog. Phys. 1995, 58, 115, and Wettlaufer, J.; Worster, M.; Wilen, L. J. Phys. Chem. B. 1997, 101, 6137, and references therein] may enhance reactivity and hydrate formation at the hydrate-ice core interface along a disordered, liquidlike, surface film. See also discussion of interface phase transitions in Sutton A.; Balluffi, R. Interfaces in Crystalline Materials; Clarendon Press: Oxford, 1995; Chapter 6.
-
(1995)
Rep. Prog. Phys.
, vol.58
, pp. 115
-
-
Dash, J.1
Fu, H.2
Wettlaufer, J.3
-
28
-
-
0031558380
-
-
"Premelting" of the ice grains (see reviews by Dash, J.; Fu, H.; Wettlaufer, J. Rep. Prog. Phys. 1995, 58, 115, and Wettlaufer, J.; Worster, M.; Wilen, L. J. Phys. Chem. B. 1997, 101, 6137, and references therein] may enhance reactivity and hydrate formation at the hydrate-ice core interface along a disordered, liquidlike, surface film. See also discussion of interface phase transitions in Sutton A.; Balluffi, R. Interfaces in Crystalline Materials; Clarendon Press: Oxford, 1995; Chapter 6.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 6137
-
-
Wettlaufer, J.1
Worster, M.2
Wilen, L.3
-
29
-
-
0000032549
-
-
Clarendon Press: Oxford, Chapter 6
-
"Premelting" of the ice grains (see reviews by Dash, J.; Fu, H.; Wettlaufer, J. Rep. Prog. Phys. 1995, 58, 115, and Wettlaufer, J.; Worster, M.; Wilen, L. J. Phys. Chem. B. 1997, 101, 6137, and references therein] may enhance reactivity and hydrate formation at the hydrate-ice core interface along a disordered, liquidlike, surface film. See also discussion of interface phase transitions in Sutton A.; Balluffi, R. Interfaces in Crystalline Materials; Clarendon Press: Oxford, 1995; Chapter 6.
-
(1995)
Interfaces in Crystalline Materials
-
-
Sutton, A.1
Balluffi, R.2
-
30
-
-
85086291708
-
-
note
-
18 confirmed that a high-pressure driving force is required for measurable hydrate formation rates and that, for hydrate formation from melting ice, higher gas pressure yields higher formation rates.
-
-
-
-
31
-
-
0344501711
-
-
Cielewicz, W., Transl.; PennWell: Tulsa, OK
-
Makogan, Y. Hydrates of Natural Gases; Cielewicz, W., Transl.; PennWell: Tulsa, OK, 1981.
-
(1981)
Hydrates of Natural Gases
-
-
Makogan, Y.1
-
32
-
-
0000912497
-
-
Hwang, M.; Wright, D.; Kapur, A.; Holder, G. J. Inclusion Phenom. 1999, 8, 103.
-
(1999)
J. Inclusion Phenom.
, vol.8
, pp. 103
-
-
Hwang, M.1
Wright, D.2
Kapur, A.3
Holder, G.4
-
33
-
-
85086292779
-
-
note
-
18
-
-
-
-
34
-
-
11744309076
-
-
note
-
The melt accumulation that accompanied hydrate conversion in the coarse-grained samples [see ref 7] suggests that a prolonged superheating effect is also partially dependent on other factors that influence diffusion rates, such as the surface area-to-volume ratio of the reacting grains and the thickness of the developing hydrate barrier to the ice core.
-
-
-
|