-
1
-
-
85034459656
-
-
note
-
4 gas molecules.
-
-
-
-
4
-
-
0002734985
-
-
Kaplan, I. R., Ed.; Plenum Press: New York
-
4 by a factor of about 170 with respect to STP gas and as little as 10% of the recovered energy is required for dissociation, hydrate reservoirs are considered a substantial future energy resource; it has been estimated that the total amount of gas in this solid form may surpass the energy content of the total fossil fuel reserves by as much as a factor of 2 (refs 2, 3, and also: Claypool, G. E.; Kaplan, I. R. In Natural Gases in Marine Sediments; Kaplan, I. R., Ed.; Plenum Press: New York, 1974; pp 99-139.
-
(1974)
Natural Gases in Marine Sediments
, pp. 99-139
-
-
Claypool, G.E.1
Kaplan, I.R.2
-
5
-
-
0029744796
-
-
Stern, L.; Kirby, S.; Durham, W. Science 1996, 273, 1843-1848.
-
(1996)
Science
, vol.273
, pp. 1843-1848
-
-
Stern, L.1
Kirby, S.2
Durham, W.3
-
10
-
-
0020846071
-
Proc. Lunar Planet. Sci. Conf. 14th, part 1
-
Durham, W.; Heard, H.; Kirby, S. Proc. Lunar Planet. Sci. Conf. 14th, part 1; J. Geophys. Res. 1983, 88, Suppl. B377-B392, 433-441. Durham, W.; Kirby, S.; Stern, L. J. Geophys. Res. 1992, 97 (E12), 20883-20897. Durham, W.; Kirby, S.; Stern, L. J. Geophys. Res. 1993, 98 (B10), 17667-17682.
-
(1983)
J. Geophys. Res.
, vol.88
, Issue.SUPPL. B377-B392
, pp. 433-441
-
-
Durham, W.1
Heard, H.2
Kirby, S.3
-
11
-
-
0020846071
-
-
Durham, W.; Heard, H.; Kirby, S. Proc. Lunar Planet. Sci. Conf. 14th, part 1; J. Geophys. Res. 1983, 88, Suppl. B377-B392, 433-441. Durham, W.; Kirby, S.; Stern, L. J. Geophys. Res. 1992, 97 (E12), 20883-20897. Durham, W.; Kirby, S.; Stern, L. J. Geophys. Res. 1993, 98 (B10), 17667-17682.
-
(1992)
J. Geophys. Res.
, vol.97
, Issue.E12
, pp. 20883-20897
-
-
Durham, W.1
Kirby, S.2
Stern, L.3
-
12
-
-
0020846071
-
-
Durham, W.; Heard, H.; Kirby, S. Proc. Lunar Planet. Sci. Conf. 14th, part 1; J. Geophys. Res. 1983, 88, Suppl. B377-B392, 433-441. Durham, W.; Kirby, S.; Stern, L. J. Geophys. Res. 1992, 97 (E12), 20883-20897. Durham, W.; Kirby, S.; Stern, L. J. Geophys. Res. 1993, 98 (B10), 17667-17682.
-
(1993)
J. Geophys. Res.
, vol.98
, Issue.B10
, pp. 17667-17682
-
-
Durham, W.1
Kirby, S.2
Stern, L.3
-
13
-
-
85034487689
-
-
note
-
10 confirmed that a high-pressure driving force is required for measurable hydrate formation rates, and that for hydrate formation from melting ice, higher gas pressure yields higher formation rates
-
-
-
-
14
-
-
0344501711
-
-
Cielewicz, W. H., Translator; PennWell: Tulsa, OK
-
Makogan, Y. Hydrates of Natural Gases, Cielewicz, W. H., Translator; PennWell: Tulsa, OK, 1981.
-
(1981)
Hydrates of Natural Gases
-
-
Makogan, Y.1
-
15
-
-
34249963281
-
-
Hwang, M. J.; Wright, D. A.; Kapur, A.; Holder, G. D. J. Inclusion Phenom. 1990, 8, 103-116.
-
(1990)
J. Inclusion Phenom.
, vol.8
, pp. 103-116
-
-
Hwang, M.J.1
Wright, D.A.2
Kapur, A.3
Holder, G.D.4
-
16
-
-
85034485097
-
-
note
-
4 uptake measured in each sample after synthesis confirms this hydrate stoichiometry and is consistent with ref 12. While ΔV of the reaction is nearly 21%, we measure only a 6.4% associated drop from the starting P due to the large volume of the combined reservoir plus sample chamber.
-
-
-
-
17
-
-
84906482503
-
-
ref 13, p 54
-
Gas hydrate number n varies with P; increasing P maximizes guest-molecule site occupancy. At sample synthesis conditions (∼28 MPa) n for methane hydrate should be 6.1 ± 0.1, and at 100 MPa n = 5.85 ± 0.05 (Saito, S.; Marshall, D.; Kobayashi, R. AIChE J. 1964, 10, 734. Also see ref 13, p 54.)
-
(1964)
AIChE J.
, vol.10
, pp. 734
-
-
Saito, S.1
Marshall, D.2
Kobayashi, R.3
-
22
-
-
0025226455
-
-
Chou, I.; Pasteris, J.; Seitz, J. Geochim. Cosmochim. Acta 1990, 54, 535.
-
(1990)
Geochim. Cosmochim. Acta
, vol.54
, pp. 535
-
-
Chou, I.1
Pasteris, J.2
Seitz, J.3
-
23
-
-
85034462607
-
Optical cell evidence for superheated ice under gas-hydrate-forming conditions
-
in press
-
Stern, L.; Hogenboom, D.; Durham, W.; Kirby, S.; Chou, I-M Optical cell evidence for superheated ice under gas-hydrate-forming conditions, J. Phys. Chem. B., in press.
-
J. Phys. Chem. B
-
-
Stern, L.1
Hogenboom, D.2
Durham, W.3
Kirby, S.4
Chou, I.-M.5
-
24
-
-
0002742046
-
-
Schmitt, B., de Bergh, C., Festou, M., Eds.; Kluwer Academic: Dordrecht, in press
-
2 vapor curve at a corresponding dissociation temperature of 283 K [see Figure 9 in: Ross, R.; Kargel, J. In Solar System Ices; Schmitt, B., de Bergh, C., Festou, M., Eds.; Kluwer Academic: Dordrecht, in press); also: Takenouchi, S.; Kennedy, G. J. Geol. 1965, 73, 383].
-
Solar System Ices
-
-
Ross, R.1
Kargel, J.2
-
25
-
-
0001117629
-
-
2 vapor curve at a corresponding dissociation temperature of 283 K [see Figure 9 in: Ross, R.; Kargel, J. In Solar System Ices; Schmitt, B., de Bergh, C., Festou, M., Eds.; Kluwer Academic: Dordrecht, in press); also: Takenouchi, S.; Kennedy, G. J. Geol. 1965, 73, 383].
-
(1965)
G. J. Geol.
, vol.73
, pp. 383
-
-
Takenouchi, S.1
Kennedy2
-
26
-
-
85034470160
-
-
note
-
We verified that the mottled surface appearance of the grains in the ice subsolidus region (Figure 7A) is caused largely by hydrate formation, rather than ice sublimation, by quickly dropping the P of a sample during the initial stage of reaction and observing partial dissociation of this early-forming hydrate rind.
-
-
-
-
27
-
-
85034484779
-
-
refs 11 and 25
-
2O vapor exists in the pore volume of the tube, most likely due to partial sublimation of the hydrate mantle encasing each ice grain. This sublimation process may also explain in part why a significant grain size increase during ice conversion to hydrate is not observed (see also refs 11 and 25).
-
-
-
-
28
-
-
85034475412
-
-
note
-
10 note that as hydrate formation is an exothermic process, the heat released by the phase change increases the temperature at the formation interface. This effect is greater for hydrate formation from liquid water than from ice since the heat of formation is partially absorbed by the melting ice.
-
-
-
-
29
-
-
85034487827
-
-
10
-
10
-
-
-
-
30
-
-
0000032549
-
-
and references therein
-
"Premelting" of the ice grains (see review by: Dash, J.; Fu, H.; Wettlaufer, J. Rep. Prog. Phys. 1995, 58, 115, and references therein) may enhance reactivity and hydrate formation on ice grains along a disordered, liquidlike, surface film. Such subsolidus surface melt films are evidently sites of limited hydrate reaction, based on sample synthesis P-T records and X-ray diffraction scans (see endnote 21 in ref 5). (See also discussion of interface phase transitions in: Button, A.; Balluffi, R. Interfaces in Crystalline Materials; Clarendon Press: Oxford, U.K., 1995; Chapter 6).
-
(1995)
Rep. Prog. Phys.
, vol.58
, pp. 115
-
-
Dash, J.1
Fu, H.2
Wettlaufer, J.3
-
31
-
-
85034477778
-
-
endnote 21 in ref 5
-
"Premelting" of the ice grains (see review by: Dash, J.; Fu, H.; Wettlaufer, J. Rep. Prog. Phys. 1995, 58, 115, and references therein) may enhance reactivity and hydrate formation on ice grains along a disordered, liquidlike, surface film. Such subsolidus surface melt films are evidently sites of limited hydrate reaction, based on sample synthesis P-T records and X-ray diffraction scans (see endnote 21 in ref 5). (See also discussion of interface phase transitions in: Button, A.; Balluffi, R. Interfaces in Crystalline Materials; Clarendon Press: Oxford, U.K., 1995; Chapter 6).
-
-
-
-
32
-
-
0004176766
-
-
Clarendon Press: Oxford, U.K., Chapter 6
-
"Premelting" of the ice grains (see review by: Dash, J.; Fu, H.; Wettlaufer, J. Rep. Prog. Phys. 1995, 58, 115, and references therein) may enhance reactivity and hydrate formation on ice grains along a disordered, liquidlike, surface film. Such subsolidus surface melt films are evidently sites of limited hydrate reaction, based on sample synthesis P-T records and X-ray diffraction scans (see endnote 21 in ref 5). (See also discussion of interface phase transitions in: Button, A.; Balluffi, R. Interfaces in Crystalline Materials; Clarendon Press: Oxford, U.K., 1995; Chapter 6).
-
(1995)
Interfaces in Crystalline Materials
-
-
Button, A.1
Balluffi, R.2
-
33
-
-
45849086986
-
-
Daeges, J.; Gleiter, H.; Perepezko, J. Phys. Lett. 1986, 119A, 79. See also: Phillpot, S.; Lutsko, J.; Wolf, D.; Yip, S. Phys. Rev. B 1989, 40(5), 283-2840; and Phillpot, S.; Yip, S.; Wolf, D. Comput. Phys. 1989, 3, 20-31, for further discussion of results.
-
(1986)
Phys. Lett.
, vol.119 A
, pp. 79
-
-
Daeges, J.1
Gleiter, H.2
Perepezko, J.3
-
34
-
-
11644324093
-
-
Daeges, J.; Gleiter, H.; Perepezko, J. Phys. Lett. 1986, 119A, 79. See also: Phillpot, S.; Lutsko, J.; Wolf, D.; Yip, S. Phys. Rev. B 1989, 40(5), 283-2840; and Phillpot, S.; Yip, S.; Wolf, D. Comput. Phys. 1989, 3, 20-31, for further discussion of results.
-
(1989)
Phys. Rev. B
, vol.40
, Issue.5
, pp. 283-2840
-
-
Phillpot, S.1
Lutsko, J.2
Wolf, D.3
Yip, S.4
-
35
-
-
0002960608
-
-
for further discussion of results
-
Daeges, J.; Gleiter, H.; Perepezko, J. Phys. Lett. 1986, 119A, 79. See also: Phillpot, S.; Lutsko, J.; Wolf, D.; Yip, S. Phys. Rev. B 1989, 40(5), 283-2840; and Phillpot, S.; Yip, S.; Wolf, D. Comput. Phys. 1989, 3, 20-31, for further discussion of results.
-
(1989)
Comput. Phys.
, vol.3
, pp. 20-31
-
-
Phillpot, S.1
Yip, S.2
Wolf, D.3
-
36
-
-
85034463041
-
-
note
-
20 or brittle/ductile behavior of the hydrate mantle that is below our resolution levels.
-
-
-
-
37
-
-
0342379299
-
-
Geophysical Monograph 56; Duba et al., A. G., Eds.; American Geophysical Union: Washington, DC
-
Heard, H.; Durham, W.; Boro, C.; Kirby, S. In The Brittle-Ductile Transition in Rocks; Geophysical Monograph 56; Duba et al., A. G., Eds.; American Geophysical Union: Washington, DC, 1990; pp 225-228.
-
(1990)
The Brittle- Ductile Transition in Rocks
, pp. 225-228
-
-
Heard, H.1
Durham, W.2
Boro, C.3
Kirby, S.4
-
38
-
-
0031413672
-
-
Durham, W.; Kirby, S.; Stern, L. J. Geophys. Res. 1997, 102 (E7), 16,293-16,302.
-
(1997)
J. Geophys. Res.
, vol.102
, Issue.E7
, pp. 16293-16302
-
-
Durham, W.1
Kirby, S.2
Stern, L.3
-
39
-
-
85034471890
-
-
note
-
We thank Tim Collett, Tom Lorenson, Joe Hightower, and one anonymous referee for providing helpful reviews of the manuscript. This work was supported under NASA order W-18,927, and was performed in part under the auspices of the USGS and in part by the U.S. DOE by the Lawrence Livermore National Laboratory under contract W-7405-ENG-48.
-
-
-
|