-
6
-
-
0027543306
-
-
E. Raphael and P. G. de Gennes, J. Phys. Chem. 96, 4002 (1992); H. Ji and P. G. de Gennes, Macromolecules 26, 520 (1993).
-
(1993)
Macromolecules
, vol.26
, pp. 520
-
-
Ji, H.1
De Gennes, P.G.2
-
9
-
-
0023981464
-
-
France
-
A. Halperin, J. Phys. (France) 49, 547 (1988).
-
(1988)
J. Phys.
, vol.49
, pp. 547
-
-
Halperin, A.1
-
11
-
-
0026418462
-
-
E. B. Zhulina, O. V. Borisov, V. A. Pryamitsyn, and T. M. Birshtein, Macromolecules 24, 140 (1991).
-
(1991)
Macromolecules
, vol.24
, pp. 140
-
-
Zhulina, E.B.1
Borisov, O.V.2
Pryamitsyn, V.A.3
Birshtein, T.M.4
-
23
-
-
0028196114
-
-
G. S. Grest and M. Murat, Macromolecules 26, 3108 (1993); G. S. Grest, ibid. 27, 418 (1994).
-
(1994)
Macromolecules
, vol.27
, pp. 418
-
-
Grest, G.S.1
-
28
-
-
0002440092
-
-
D. Perahia, D. G. Wiesler, S. K. Satija, L. J. Fetters, S. K. Sinha, and S. L. Milner, Phys. Rev. Lett. 72, 100 (1994); D. Perahia, D. G. Wiesler, S. K. Satija, L. J. Fetters, S. K. Sinha, and G. S. Grest, Physica B 221, 337 (1996).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 100
-
-
Perahia, D.1
Wiesler, D.G.2
Satija, S.K.3
Fetters, L.J.4
Sinha, S.K.5
Milner, S.L.6
-
29
-
-
0030563092
-
-
D. Perahia, D. G. Wiesler, S. K. Satija, L. J. Fetters, S. K. Sinha, and S. L. Milner, Phys. Rev. Lett. 72, 100 (1994); D. Perahia, D. G. Wiesler, S. K. Satija, L. J. Fetters, S. K. Sinha, and G. S. Grest, Physica B 221, 337 (1996).
-
(1996)
Physica B
, vol.221
, pp. 337
-
-
Perahia, D.1
Wiesler, D.G.2
Satija, S.K.3
Fetters, L.J.4
Sinha, S.K.5
Grest, G.S.6
-
32
-
-
0001697032
-
-
A. Karim, S. K. Satija, J. F. Douglas, J. F. Ankner, and L. J. Fetters. Phys. Rev. Lett. 73, 3407 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 3407
-
-
Karim, A.1
Satija, S.K.2
Douglas, J.F.3
Ankner, J.F.4
Fetters, L.J.5
-
33
-
-
0030562934
-
-
A. Karim, J. F. Douglas, F. Horkay, L. J. Fetters, and S. K. Satija, Physica B 221, 331 (1996).
-
(1996)
Physica B
, vol.221
, pp. 331
-
-
Karim, A.1
Douglas, J.F.2
Horkay, F.3
Fetters, L.J.4
Satija, S.K.5
-
36
-
-
85034546702
-
-
in preparation
-
S. M. Baker, N. Melosh, E. Torgerson, G. Smith, C. Toprakcioglu, and A. Vradis (in preparation).
-
-
-
Baker, S.M.1
Melosh, N.2
Torgerson, E.3
Smith, G.4
Toprakcioglu, C.5
Vradis, A.6
-
38
-
-
0028430104
-
-
W. Zhao, G. Krausch, M. H. Rafailovich, and J. Sokolov, Macromolecules 27, 2933 (1994).
-
(1994)
Macromolecules
, vol.27
, pp. 2933
-
-
Zhao, W.1
Krausch, G.2
Rafailovich, M.H.3
Sokolov, J.4
-
39
-
-
0029390338
-
-
A. Karim, V. V. Tsukruk, J. F. Douglas, S. K. Satija, L. J. Fetters, D. H. Reneker, and M. D. Foster, J. Phys. II 5, 1441 (1995).
-
(1995)
J. Phys. II
, vol.5
, pp. 1441
-
-
Karim, A.1
Tsukruk, V.V.2
Douglas, J.F.3
Satija, S.K.4
Fetters, L.J.5
Reneker, D.H.6
Foster, M.D.7
-
41
-
-
0345331645
-
-
M. S. Kent, L. T. Lee, B. Farnoux, and F. Rondelez, Macromolecules 22, 1449 (1989).
-
(1989)
Macromolecules
, vol.22
, pp. 1449
-
-
Kent, M.S.1
Lee, L.T.2
Farnoux, B.3
Rondelez, F.4
-
42
-
-
0000036316
-
-
B. J. Factor, L. T. Lee, M. S. Kent, and F. Rondelez, Phys. Rev. E 48, 2354 (1993).
-
(1993)
Phys. Rev. E
, vol.48
, pp. 2354
-
-
Factor, B.J.1
Lee, L.T.2
Kent, M.S.3
Rondelez, F.4
-
43
-
-
29444433368
-
-
M. S. Kent, L. T. Lee, B. J. Factor, F. Rondelez, and G. Smith, J. Chem. Phys. 103, 2320 (1995).
-
(1995)
J. Chem. Phys.
, vol.103
, pp. 2320
-
-
Kent, M.S.1
Lee, L.T.2
Factor, B.J.3
Rondelez, F.4
Smith, G.5
-
44
-
-
0032047428
-
-
M. S. Kent, J. Majewski, G. Smith, L. T. Lee, and S. Satija, J. Chem. Phys. 108, 5635 (1998).
-
(1998)
J. Chem. Phys.
, vol.108
, pp. 5635
-
-
Kent, M.S.1
Majewski, J.2
Smith, G.3
Lee, L.T.4
Satija, S.5
-
45
-
-
37049079128
-
-
L. T. Lee, B. J. Factor, M. S. Kent, and F. Rondelez, J. Chem. Soc., Faraday Discuss. 98, 139 (1994).
-
(1994)
J. Chem. Soc., Faraday Discuss.
, vol.98
, pp. 139
-
-
Lee, L.T.1
Factor, B.J.2
Kent, M.S.3
Rondelez, F.4
-
48
-
-
0030575012
-
-
M. S. Kent, B. J. Factor, S. Satija, P. Gallagher, and G. S. Smith, Macromolecules 29, 2843 (1996).
-
(1996)
Macromolecules
, vol.29
, pp. 2843
-
-
Kent, M.S.1
Factor, B.J.2
Satija, S.3
Gallagher, P.4
Smith, G.S.5
-
51
-
-
85034564336
-
-
note
-
Use of a commercial product does not imply recommendation or endorsement by NIST, nor does it imply that the product is necessarily the best available.
-
-
-
-
52
-
-
0026885754
-
-
N. P. Balsara, D. Perahia, C. R. Safinya, M. Tirrell, and T. P. Lodge, Macromolecules 25, 3896 (1992).
-
(1992)
Macromolecules
, vol.25
, pp. 3896
-
-
Balsara, N.P.1
Perahia, D.2
Safinya, C.R.3
Tirrell, M.4
Lodge, T.P.5
-
55
-
-
85034543963
-
-
note
-
For a surface with heterogeneity on a scale which is large compared with the coherence length of the neutron beam, the reflectivity is an area-weighted average of the intensity reflected from each region. In the present case, the area fraction occupied by the islands of copolymer cannot be determined precisely because the reflectivity from the islands is not known. However, an upper bound of 20% is obtained using the reflectivity from the dispersed state in the inset to Fig. 7. The dimension of the tethered layer normal to the surface is nearly the same in the islands as in the dispersed state, as can be seen from the comparable peak positions for the data at -30°C in Fig. 7 and in the inset.
-
-
-
-
59
-
-
0001575265
-
-
B. Chu, I. H. Park, Q. W. Wang, and C. Wu, Macromolecules 20, 2833 (1987).
-
(1987)
Macromolecules
, vol.20
, pp. 2833
-
-
Chu, B.1
Park, I.H.2
Wang, Q.W.3
Wu, C.4
-
61
-
-
0041942857
-
-
C. Wu and S. Zhou, Macromolecules 28, 8381 (1995); X. Wang, X. Qiu, and C. Wu, Macromolecules 31, 2972 (1998).
-
(1995)
Macromolecules
, vol.28
, pp. 8381
-
-
Wu, C.1
Zhou, S.2
-
62
-
-
0032485753
-
-
C. Wu and S. Zhou, Macromolecules 28, 8381 (1995); X. Wang, X. Qiu, and C. Wu, Macromolecules 31, 2972 (1998).
-
(1998)
Macromolecules
, vol.31
, pp. 2972
-
-
Wang, X.1
Qiu, X.2
Wu, C.3
-
64
-
-
85034543706
-
-
note
-
g. θ (Ref. 40), and here we assume that the same holds for the ratios in theta and poor solvents.
-
-
-
-
65
-
-
85034565045
-
-
note
-
g is a linear function of Σ over this range (Ref. 40).
-
-
-
-
66
-
-
85034543947
-
-
note
-
This upper limit for the magnitude of the temperature gradient through the liquid was determined by varying the vertical position of the thermocouple, which resulted in a variation of 3.4° at the lowest temperature. This is an upper limit since the thermocouple may have been partially exposed to the air above the liquid at its highest vertical position. A different method with liner spatial resolution is required to precisely determine the gradient. In addition to the above, the fact that the surface tension continues to increase nearly linearly down to the lowest temperatures (see Fig. 6) indicates that the surface layer is experiencing nearly the same variation in temperature as that measured by the thermocouple down to the lowest temperatures. From the linearity in the data for DOP, the temperature gradient would appear to be less than 4°C.
-
-
-
-
67
-
-
85034559264
-
-
note
-
dry are evaluated in the strong stretching limit.
-
-
-
-
68
-
-
0000655272
-
-
E. K. Mann, S. Henon, D. Langevin, and J. Meunier, J. Phys. II 2, 1683 (1992).
-
(1992)
J. Phys. II
, vol.2
, pp. 1683
-
-
Mann, E.K.1
Henon, S.2
Langevin, D.3
Meunier, J.4
-
69
-
-
85034559077
-
-
Ph.D. thesis, Department of Physics, Memorial University of Newfoundland
-
R. Baranowski, Ph.D. thesis, Department of Physics, Memorial University of Newfoundland, 1997.
-
(1997)
-
-
Baranowski, R.1
-
70
-
-
85034558183
-
-
note
-
rms. θ values at τ = -0.21 in Fig. 4(a).
-
-
-
|