-
2
-
-
0004074760
-
-
John Wiley, New York, NY
-
BOX, G. E. P.; HUNTER, W. G.; and HUNTER, J. S. (1978). Statistics for Experimenters. John Wiley, New York, NY, pp 375-384.
-
(1978)
Statistics for Experimenters
, pp. 375-384
-
-
Box, G.E.P.1
Hunter, W.G.2
Hunter, J.S.3
-
3
-
-
0022659311
-
An analysis for unreplicated fractional factorials
-
BOX, G. E. P. and MEYER, R. D. (1986a). "An Analysis for Unreplicated Fractional Factorials". Technometrics 28, pp. 11-18.
-
(1986)
Technometrics
, vol.28
, pp. 11-18
-
-
Box, G.E.P.1
Meyer, R.D.2
-
4
-
-
0022660346
-
Dispersion effects from fractional designs
-
BOX, G. E. P. and MEYER, R. D. (1986b). "Dispersion Effects From Fractional Designs". Technometrics 28, pp. 19-27.
-
(1986)
Technometrics
, vol.28
, pp. 19-27
-
-
Box, G.E.P.1
Meyer, R.D.2
-
5
-
-
84894519856
-
Use of half-normal plots in interpreting factorial two-level experiments
-
DANIEL, C. (1959). "Use of Half-Normal Plots in Interpreting Factorial Two-Level Experiments". Technometrics 1, pp. 311-341.
-
(1959)
Technometrics
, vol.1
, pp. 311-341
-
-
Daniel, C.1
-
8
-
-
0007466425
-
Small samples estimation of dispersion effects from unreplicated data
-
FERRER, A. J. and ROMERO, R. (1993a). "Small Samples Estimation of Dispersion Effects From Unreplicated Data". Communications in Statistics - Simulations 22, pp. 975-995.
-
(1993)
Communications in Statistics - Simulations
, vol.22
, pp. 975-995
-
-
Ferrer, A.J.1
Romero, R.2
-
9
-
-
0000339218
-
A simple method to study dispersion effects from non-necessarily replicated data in industrial contexts
-
FERRER, A. J. and ROMERO, R. (1993b). "A Simple Method to Study Dispersion Effects from Non-necessarily Replicated Data in Industrial Contexts". Quality Engineering 7, pp. 747-755.
-
(1993)
Quality Engineering
, vol.7
, pp. 747-755
-
-
Ferrer, A.J.1
Romero, R.2
-
11
-
-
0542448402
-
Analyzing unreplicated factorial experiments: A review with some new proposals
-
HAMADA, M. and BALAKRISHNAN, N. (1998). "Analyzing Unreplicated Factorial Experiments: A Review with Some New Proposals" (with discussion). Statistica Sinica 8, pp. 1-38.
-
(1998)
Statistica Sinica
, vol.8
, pp. 1-38
-
-
Hamada, M.1
Balakrishnan, N.2
-
12
-
-
0001199871
-
A simple method to identify significant effects in unreplicated two-level factorial designs
-
JUAN, J. and PEÑA, D. (1992). "A Simple Method to Identify Significant Effects in Unreplicated Two-Level Factorial Designs". Communications in Statistics - Theory and Methods 21, pp. 1383-1403.
-
(1992)
Communications in Statistics - Theory and Methods
, vol.21
, pp. 1383-1403
-
-
Juan, J.1
Peña, D.2
-
13
-
-
0024767930
-
Quick and easy analysis of unreplicated factorials
-
LENTH, R. (1989). "Quick and Easy Analysis of Unreplicated Factorials". Technometrics 31, pp. 469-473.
-
(1989)
Technometrics
, vol.31
, pp. 469-473
-
-
Lenth, R.1
-
14
-
-
84948490212
-
Using fractional factorial designs for robust process development
-
MONTGOMERY, D. C. (1990). "Using Fractional Factorial Designs for Robust Process Development". Quality Engineering 3, pp. 193-205.
-
(1990)
Quality Engineering
, vol.3
, pp. 193-205
-
-
Montgomery, D.C.1
-
15
-
-
0024062296
-
Analyzing dispersion effects from replicated factorial experiments
-
NAIR, V. N. and PREGIBON, D. (1988). "Analyzing Dispersion Effects From Replicated Factorial Experiments". Technometrics 30, pp. 247-257.
-
(1988)
Technometrics
, vol.30
, pp. 247-257
-
-
Nair, V.N.1
Pregibon, D.2
-
17
-
-
38249023595
-
Tests for dispersion effects from orthogonal arrays
-
WANG, P. C. (1989). "Tests for Dispersion Effects From Orthogonal Arrays". Computational Statistics and Data Analysis 8, pp. 109-117.
-
(1989)
Computational Statistics and Data Analysis
, vol.8
, pp. 109-117
-
-
Wang, P.C.1
-
18
-
-
0009732898
-
A step down lenth method for analyzing unreplicated factorial designs
-
YE, K. Q.; HAMADA, M.; and WU, C. F. J. (2001). "A Step Down Lenth Method for Analyzing Unreplicated Factorial Designs". Journal of Quality Technology 33, pp. 140-152.
-
(2001)
Journal of Quality Technology
, vol.33
, pp. 140-152
-
-
Ye, K.Q.1
Hamada, M.2
Wu, C.F.J.3
|