-
1
-
-
0002199454
-
The Neumann problem for elliptic equations with critical non-linearity. A tribute in honor of G. Prodi
-
Adimurthi and G. Mancini. The Neumann problem for elliptic equations with critical non-linearity. A tribute in honor of G. Prodi. Scuola Norm. Sup. Pisa, 1991, pages 9-25.
-
(1991)
Scuola Norm. Sup. Pisa
, pp. 9-25
-
-
Mancini, G.1
-
2
-
-
84941275804
-
A relation between pointwise convergence of functions and convergence of functionals
-
H. Brezis and E. Lieb. A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc., 88, 1983, pages 486-490.
-
(1983)
Proc. Amer. Math. Soc.
, vol.88
, pp. 486-490
-
-
Brezis, H.1
Lieb, E.2
-
3
-
-
34250271532
-
Symmetry and related properties via the maximum principle
-
B. Gidas, W. Ni, and L. Nirenberg. Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68, 1979, pages 209-243.
-
(1979)
Comm. Math. Phys.
, vol.68
, pp. 209-243
-
-
Gidas, B.1
Ni, W.2
Nirenberg, L.3
-
5
-
-
0002532511
-
Reflection groups and coxeter groups
-
Cambridge University Press
-
J. E. Humphreys. Reflection Groups and Coxeter Groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1990.
-
(1990)
Cambridge Studies in Advanced Mathematics
, vol.29
-
-
Humphreys, J.E.1
-
6
-
-
0014748565
-
Initiation of slime mold aggregation viewed as an instability
-
E. Keller and L. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol., 26, 1970, pages 399-415.
-
(1970)
J. Theoret. Biol.
, vol.26
, pp. 399-415
-
-
Keller, E.1
Segel, L.2
-
7
-
-
21844513419
-
Symmetry-breaking at non-positive solutions of semilinear elliptic equations
-
R. Lauterbach and S. Maier. Symmetry-breaking at non-positive solutions of semilinear elliptic equations. Arch. Rat. Mech. Anal., 126(4), 1994, pages 299-331.
-
(1994)
Arch. Rat. Mech. Anal.
, vol.126
, Issue.4
, pp. 299-331
-
-
Lauterbach, R.1
Maier, S.2
-
8
-
-
85030707196
-
The concentration-compactness principle in the calculus of variations. The locally compact case
-
P. L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 1984, pages 109-145, 223-283. Part 1 and Part 2.
-
(1984)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.1
, Issue.PART 1 AND PART 2
, pp. 109-145
-
-
Lions, P.L.1
-
12
-
-
0039638311
-
On the existence and shape of solutions to a semilinear Neumann problem
-
Lloyd, Ni, Peletier, and Serrin, editors
-
W.-M. Ni and I. Takagi. On the existence and shape of solutions to a semilinear Neumann problem. In Lloyd, Ni, Peletier, and Serrin, editors, Progress in Nonlinear Differential Equations, 1992, pages 425-436.
-
(1992)
Progress in Nonlinear Differential Equations
, pp. 425-436
-
-
Ni, W.-M.1
Takagi, I.2
-
13
-
-
0002783768
-
The principle of symmetric criticality
-
R. Palais. The principle of symmetric criticality. Comm. Math. Phys., 69, 1979, pages 19-30.
-
(1979)
Comm. Math. Phys.
, vol.69
, pp. 19-30
-
-
Palais, R.1
-
14
-
-
0001901435
-
Minimax methods in critical point theory with applications to differential equations
-
Amer. Math. Soc., Providence
-
P. Rabinowitz. Minimax Methods in Critical Point Theory with Applications to Differential Equations, volume 65 of CBMS Regional Conf. Amer. Math. Soc., Providence, 1986.
-
(1986)
CBMS Regional Conf.
, vol.65
-
-
Rabinowitz, P.1
-
15
-
-
0000220970
-
A global compactness result for elliptic boundary value problems involving limiting nonlinearities
-
M. Struwe. A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z., 187, 1984, pages 511-517.
-
(1984)
Math. Z.
, vol.187
, pp. 511-517
-
-
Struwe, M.1
-
17
-
-
0001173375
-
Neumann problems of semilinear elliptic equations involving critical Sobolev exponents
-
X.-J. Wang. Neumann problems of semilinear elliptic equations involving critical Sobolev exponents. J. Differential Equations, 93, 1991, pages 283-310.
-
(1991)
J. Differential Equations
, vol.93
, pp. 283-310
-
-
Wang, X.-J.1
-
18
-
-
0013494236
-
On the shape of solutions for a nonlinear Neumann problem in symmetric domains
-
Allgower, Georg, and Miranda, editors, Exploiting Symmetry in Applied and Numerical Analysis, American Mathematical Society
-
Z.-Q. Wang. On the shape of solutions for a nonlinear Neumann problem in symmetric domains. In Allgower, Georg, and Miranda, editors, Exploiting Symmetry in Applied and Numerical Analysis, volume 29 of Lectures in Applied Math. American Mathematical Society, 1993, pages 433-442.
-
(1993)
Lectures in Applied Math.
, vol.29
, pp. 433-442
-
-
Wang, Z.-Q.1
-
19
-
-
84972510204
-
The effect of the domain geometry on the number of positive solutions of Neumann problems with critical exponents
-
Z.-Q. Wang. The effect of the domain geometry on the number of positive solutions of Neumann problems with critical exponents. Differential Integral Equations, 8, 1995, pages 1533-1554.
-
(1995)
Differential Integral Equations
, vol.8
, pp. 1533-1554
-
-
Wang, Z.-Q.1
-
20
-
-
84973975136
-
High-energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponents
-
Z.-Q. Wang. High-energy and multi-peaked solutions for a nonlinear Neumann problem with critical exponents. Proc. Roy. Soc. Edinburgh Sect. A, 125, 1995, pages 1003-1029.
-
(1995)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.125
, pp. 1003-1029
-
-
Wang, Z.-Q.1
-
21
-
-
0039046330
-
On the existence and qualitative properties of solutions for a nonlinear Neumann problem with critical exponent
-
Lakshmikantham, editor, de Gruyter
-
Z.-Q. Wang. On the existence and qualitative properties of solutions for a nonlinear Neumann problem with critical exponent. In Lakshmikantham, editor, Proceedings of the First World Congress of Nonlinear Analysts '92. de Gruyter, 1996, pages 1445-1456.
-
(1996)
Proceedings of the First World Congress of Nonlinear Analysts '92
, pp. 1445-1456
-
-
Wang, Z.-Q.1
-
22
-
-
0040824877
-
Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains
-
to appear
-
Z.-Q. Wang. Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains. Nonlinear Anal., to appear.
-
Nonlinear Anal.
-
-
Wang, Z.-Q.1
|