-
2
-
-
0842265496
-
-
Berne, B. J.; Borkovec, M.; Straub, J. E. J. Phys. Chem. 1988, 92, 3711.
-
(1988)
J. Phys. Chem.
, vol.92
, pp. 3711
-
-
Berne, B.J.1
Borkovec, M.2
Straub, J.E.3
-
3
-
-
0003518237
-
-
Kaiser, W., Ed.; Springer: Berlin
-
For recent reviews, see, e.g.: Zinth, W.; Kaiser, W. In Topics in Applied Physics; Kaiser, W., Ed.; Springer: Berlin, 1993; Vol. 60.
-
(1993)
Topics in Applied Physics
, vol.60
-
-
Zinth, W.1
Kaiser, W.2
-
7
-
-
0001206124
-
-
(b) Fried, L. E.; Bernstein, N.; Mukamel, S. Phys. Rev. Lett. 1992, 68, 1842.
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 1842
-
-
Fried, L.E.1
Bernstein, N.2
Mukamel, S.3
-
10
-
-
36449006469
-
-
(a) Cho, M.; Scherer, N. F.; Fleming, G. R.; Mukamel, S. J. Chem. Phys. 1992, 96, 5618.
-
(1992)
J. Chem. Phys.
, vol.96
, pp. 5618
-
-
Cho, M.1
Scherer, N.F.2
Fleming, G.R.3
Mukamel, S.4
-
12
-
-
0000393089
-
-
(a) Becker, P. C.; Fragnito, H. L.; Bigot, J. Y.; Brito Cruz, C. H.; Fork, R. L.; Shank, C. V. Phys. Rev. Lett. 1989, 63, 505.
-
(1989)
Phys. Rev. Lett.
, vol.63
, pp. 505
-
-
Becker, P.C.1
Fragnito, H.L.2
Bigot, J.Y.3
Brito Cruz, C.H.4
Fork, R.L.5
Shank, C.V.6
-
13
-
-
3442879990
-
-
(b) Bigot, J.-Y.; Portella, M. T.; Schoenlein, R. W.; Bardeen, C. J.; Migus, A.; Shank, C. V. Phys. Rev. Lett. 1991, 66, 1138.
-
(1991)
Phys. Rev. Lett.
, vol.66
, pp. 1138
-
-
Bigot, J.-Y.1
Portella, M.T.2
Schoenlein, R.W.3
Bardeen, C.J.4
Migus, A.5
Shank, C.V.6
-
14
-
-
0001323210
-
-
Nibbering, E. T. J.; Wiersma, D. A.; Duppen, K. Phys. Rev. Lett. 1991, 66, 2464;
-
(1991)
Phys. Rev. Lett.
, vol.66
, pp. 2464
-
-
Nibbering, E.T.J.1
Wiersma, D.A.2
Duppen, K.3
-
15
-
-
0010148429
-
-
Chem. Phys. 1994, 183, 167.
-
(1994)
Chem. Phys.
, vol.183
, pp. 167
-
-
-
16
-
-
0029406533
-
-
(a) Yang, T.-S.; Vöhringer, P.; Arnett, D. C.; Scherer, N. F. J. Chem. Phys. 1995, 103, 8346.
-
(1995)
J. Chem. Phys.
, vol.103
, pp. 8346
-
-
Yang, T.-S.1
Vöhringer, P.2
Arnett, D.C.3
Scherer, N.F.4
-
17
-
-
0001123412
-
-
(b) Vöhringer, P.; Arnett, D. C.; Yang, T.-S.; Scherer, N. F. Chem. Phys. Lett. 1995, 237, 387.
-
(1995)
Chem. Phys. Lett.
, vol.237
, pp. 387
-
-
Vöhringer, P.1
Arnett, D.C.2
Yang, T.-S.3
Scherer, N.F.4
-
18
-
-
5244364608
-
-
de Boeij, W. P.; Pshenichnikov, M. S.; Wiersma, D. A. Chem. Phys. Lett. 1995, 238, 1.
-
(1995)
Chem. Phys. Lett.
, vol.238
, pp. 1
-
-
De Boeij, W.P.1
Pshenichnikov, M.S.2
Wiersma, D.A.3
-
19
-
-
22244485907
-
-
Tokmakoff, A.; Zimdars, D.; Urdahl, R. S.; Francis, R. S.; Kwok, A. S.; Fayer, M. D. J. Phys. Chem. 1995, 99, 13310.
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 13310
-
-
Tokmakoff, A.1
Zimdars, D.2
Urdahl, R.S.3
Francis, R.S.4
Kwok, A.S.5
Fayer, M.D.6
-
20
-
-
0001286942
-
-
(a) Bursulaya, B. D.; Zichi, D. A.; Kim, H. J. J. Phys. Chem. 1995, 99, 10069;
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 10069
-
-
Bursulaya, B.D.1
Zichi, D.A.2
Kim, H.J.3
-
21
-
-
33751151322
-
-
(b) Bursulaya, B. D.; Zichi, D. A.; Kim, H. J. J. Phys. Chem. 1996, 100, 1392.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 1392
-
-
Bursulaya, B.D.1
Zichi, D.A.2
Kim, H.J.3
-
23
-
-
85033056716
-
-
note
-
For simplicity, a point dipolar solute will be assumed throughout, even though the extended charge distributions were used in the actual simulations.
-
-
-
-
24
-
-
85033062546
-
-
note
-
LJ does not depend on the solute electronic states in the current formulation.
-
-
-
-
25
-
-
85033040828
-
-
note
-
To distinguish the adiabatic states in vacuum and in solution, we will denote the former as |i〉 = |0〉, |1〉, ..., corresponding to the vacuum ground, first-excited,... states, while the latter will be represented as |g〉, |e〉, ....
-
-
-
-
26
-
-
85033063316
-
-
note
-
1 is usually regarded as a photon echo, we will also adopt this convention in this letter.
-
-
-
-
27
-
-
85033048118
-
-
note
-
42
-
-
-
-
28
-
-
33646940952
-
-
Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327.
-
(1977)
J. Comput. Phys.
, vol.23
, pp. 327
-
-
Ryckaert, J.P.1
Ciccotti, G.2
Berendsen, H.J.C.3
-
29
-
-
1242346370
-
-
Berendsen, H. J. C.; Gigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.
-
(1987)
J. Phys. Chem.
, vol.91
, pp. 6269
-
-
Berendsen, H.J.C.1
Gigera, J.R.2
Straatsma, T.P.3
-
30
-
-
85033054971
-
-
note
-
Since there is no solvent-induced electronic coupling for the EN models due to vanishing transition dipole moments, their vacuum and solution-phase adiabatic states are identical in our description, i.e., |g〉 = |0〉 and |e〉 = |1〉.
-
-
-
-
31
-
-
85033037280
-
-
note
-
A two-state description with a nonvanishing transition dipole moment yields a negative electronic polarizability for the (first) excited state. To avoid this, we need, at least, one more state that is higher in energy and electronically coupled via a nonvanishing transition dipole to the first excited state.
-
-
-
-
32
-
-
85033054763
-
-
note
-
12
-
-
-
-
37
-
-
85033046529
-
-
note
-
12b
-
-
-
-
38
-
-
85033044143
-
-
note
-
We have found that the echo calculation essentially converges with ∼400 nonequilibrium trajectories for both polarizable and nonpolarizable solutes.
-
-
-
-
39
-
-
0004203987
-
-
Agrawal, G. P., Boyd, R. W., Eds.; Academic Press: Boston
-
Walmsley, I. A.; Kafka, J. D. In Contemporary Nonlinear Optics; Agrawal, G. P., Boyd, R. W., Eds.; Academic Press: Boston, 1992.
-
(1992)
Contemporary Nonlinear Optics
-
-
Walmsley, I.A.1
Kafka, J.D.2
-
43
-
-
85033055942
-
-
note
-
Thus the transition dipole moment fluctuations are not included in eq 7. We nonetheless believe that these will not influence the spectra significantly (see below).
-
-
-
-
44
-
-
85033035838
-
-
note
-
The solvent force constants associated with the |g〉 and |e〉 electronic curves for EN1 are about the same because both states are nonpolarizable.
-
-
-
-
45
-
-
85033054324
-
-
note
-
With the same reasoning, we would expect that the steady-state emission spectra for the EN1, QP1, and QP2 solutes would show exactly the opposite trend of the absorption; to be specific, the spectral line width for emission will be the largest for QP1 and smallest for QP2. The MD results, though not presented here, confirm this.
-
-
-
-
46
-
-
85033045244
-
-
note
-
This is in contrast with the general parallel between the effects of increasing polarizability and of growing dipole moment observed for the equilibrium solvation structure and solute rotational dynamics in ref 12b.
-
-
-
-
47
-
-
85033048705
-
-
note
-
e for the former solute is weaker than that for the latter.
-
-
-
-
48
-
-
85033036278
-
-
note
-
g for QP2 is higher than that for EN1, this dipole reduction would further increase the absorption line-shape difference between the QP2 and EN models. From this observation and ref 34, we also conclude that in contrast to the absorption case, the EN2 solute will not reproduce the steady-state emission spectrum of QP1.
-
-
-
-
49
-
-
85033041689
-
-
note
-
s is the solvent frequency in Table 3.
-
-
-
-
50
-
-
85033060830
-
-
note
-
C relaxation actually slower than that of EN1.
-
-
-
-
51
-
-
85033068817
-
-
note
-
3,4,6,7b,9b,10 which actually populates the excited states.
-
-
-
-
52
-
-
85033070613
-
-
note
-
g will be signalled, in general, by a decrease in Stokes shift in fluorescence spectroscopy.
-
-
-
-
55
-
-
33750109348
-
-
Maroncelli, M.; MacInnis, J.; Fleming, G. R. Science 1989, 243, 1674.
-
(1989)
Science
, vol.243
, pp. 1674
-
-
Maroncelli, M.1
MacInnis, J.2
Fleming, G.R.3
-
56
-
-
0000971326
-
-
Fincham, D.; Quirke, N.; Tildesley, D. J. J. Chem. Phys. 1986, 84, 4535.
-
(1986)
J. Chem. Phys.
, vol.84
, pp. 4535
-
-
Fincham, D.1
Quirke, N.2
Tildesley, D.J.3
|