-
5
-
-
0031074795
-
-
(a) Sedo, J.; Ruiz, D.; Vidal-Gancedo, J.; Rovira, C.; Bonvoisin, J.; Launay, J.-P.; Veciana, J. Synth. Met. 1997, 85, 1651.
-
(1997)
Synth. Met.
, vol.85
, pp. 1651
-
-
Sedo, J.1
Ruiz, D.2
Vidal-Gancedo, J.3
Rovira, C.4
Bonvoisin, J.5
Launay, J.-P.6
Veciana, J.7
-
6
-
-
0001345409
-
-
(b) Lahlil, K.; Moradpour, A.; Bowlas, C.; Menou, F.; Cassoux, A.; Bonvoisin, J.; Launay, J.-P.; Dive, G.; Dehareng, D. J. Am. Chem. Soc. 1995, 777, 9995.
-
(1995)
J. Am. Chem. Soc.
, vol.777
, pp. 9995
-
-
Lahlil, K.1
Moradpour, A.2
Bowlas, C.3
Menou, F.4
Cassoux, A.5
Bonvoisin, J.6
Launay, J.-P.7
Dive, G.8
Dehareng, D.9
-
9
-
-
0000794028
-
-
(e) Mazur, S.; Sreekumar, C.; Schroeder, A. H. J. Am. Chem. Soc. 1976, 98, 6713.
-
(1976)
J. Am. Chem. Soc.
, vol.98
, pp. 6713
-
-
Mazur, S.1
Sreekumar, C.2
Schroeder, A.H.3
-
10
-
-
0009389180
-
-
(f) Wudl, F.; Wobschall, D.; Hufnagel, E. J. J. Am. Chem. Soc. 1972, 94, 670.
-
(1972)
Am. Chem. Soc.
, vol.94
, pp. 670
-
-
Wudl, F.1
Wobschall, D.2
Hufnagel, E.J.J.3
-
11
-
-
0027851751
-
-
Nelsen, S. F.; Chang, H.; Wolff, J. J.; Adamus, J. J. Am. Chem. Soc. 1993, 115, 12276.
-
(1993)
Am. Chem. Soc.
, vol.115
, pp. 12276
-
-
Nelsen, S.F.1
Chang, H.2
Wolff, J.J.3
Adamus, J.J.4
-
12
-
-
0030759794
-
-
Nelsen, S. F.; Ramm, M. T.; Wolff, J. J.; Powell, D. R. J. Am. Chem. Soc. 1997, 119, 6863.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 6863
-
-
Nelsen, S.F.1
Ramm, M.T.2
Wolff, J.J.3
Powell, D.R.4
-
13
-
-
3342891574
-
-
Nelsen, S. F.; Ramm, M. T.; Wolff, J. J.; Powell, D. R. J. Org. Chem. 1996, 61, 4703.
-
(1996)
J. Org. Chem.
, vol.61
, pp. 4703
-
-
Nelsen, S.F.1
Ramm, M.T.2
Wolff, J.J.3
Powell, D.R.4
-
14
-
-
0030671417
-
-
Nelsen, S. F.; Ismagilov, R.; Trieber, D. A. Science 1997, 278, 846.
-
(1997)
Science
, vol.278
, pp. 846
-
-
Nelsen, S.F.1
Ismagilov, R.2
Trieber, D.A.3
-
16
-
-
1842331199
-
-
Nelsen, S. F.; Chang, H.; Wolff, J. J.; Powell, D. R. J. Org. Chem. 1994, 59, 6558.
-
(1994)
J. Org. Chem.
, vol.59
, pp. 6558
-
-
Nelsen, S.F.1
Chang, H.2
Wolff, J.J.3
Powell, D.R.4
-
17
-
-
0031245956
-
-
(a) Williams, R. D.; Petrov, V. L; Lu, H. P.; Hupp, J. T. J. Phys. Chem. A 1997, 707, 8070.
-
(1997)
J. Phys. Chem. A
, vol.707
, pp. 8070
-
-
Williams, R.D.1
Petrov, V.L.2
Lu, H.P.3
Hupp, J.T.4
-
18
-
-
0000381571
-
-
(b) Lu, H.; Petrov, V.; Hupp, J. T. Chem. Phys. Lett. 1995, 255, 521.
-
(1995)
Chem. Phys. Lett.
, vol.255
, pp. 521
-
-
Lu, H.1
Petrov, V.2
Hupp, J.T.3
-
19
-
-
0028768990
-
-
Petrov, V.; Hupp, J. T.; Mottley, C.; Mann, L. C. J. Am. Chem. Soc. 1994, 776, 2171.
-
(1994)
J. Am. Chem. Soc.
, vol.776
, pp. 2171
-
-
Petrov, V.1
Hupp, J.T.2
Mottley, C.3
Mann, L.C.4
-
22
-
-
0001426656
-
-
(a) Heller, E. J.; Sundberg, R. L.; Tannor, D. J. Phys. Chem. 1982, 86, 1822.
-
(1982)
J. Phys. Chem.
, vol.86
, pp. 1822
-
-
Heller, E.J.1
Sundberg, R.L.2
Tannor, D.3
-
27
-
-
0000534619
-
-
Myers, A. B., Rizzo, T. R., Eds.; Techniques of Chemistry 23; Wiley: New York
-
(b) Myers, A. B. in Laser Techniques in Chemistry; Myers, A. B., Rizzo, T. R., Eds.; Techniques of Chemistry 23; Wiley: New York, 1995; p 325.
-
(1995)
Laser Techniques in Chemistry
, pp. 325
-
-
Myers, A.B.1
-
31
-
-
0001912736
-
-
Spiro, T. G., Ed.; Wiley: New York
-
(f) Myers, A. B.; Mathies, R. A. In Biological Applications of Roman Speclroscopy; Spiro, T. G., Ed.; Wiley: New York, 1987; Vol. 2, pp 1-58.
-
(1987)
Biological Applications of Roman Speclroscopy
, vol.2
, pp. 1-58
-
-
Myers, A.B.1
Mathies, R.A.2
-
32
-
-
0030576397
-
-
(a) Phillips, D. L.; Gould, I. R.; Verhoeven, J. W.; TittelbachHelmrich, D.; Myers, A. B. Chem. Phys. Lett. 1996, 258, 87.
-
(1996)
Chem. Phys. Lett.
, vol.258
, pp. 87
-
-
Phillips, D.L.1
Gould, I.R.2
Verhoeven, J.W.3
Tittelbachhelmrich, D.4
Myers, A.B.5
-
33
-
-
5844258529
-
-
(b) Kulinowski, K.; Gould, I. R.; Myers, A. B. J. Phys. Chem. 1995, 99, 9017.
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 9017
-
-
Kulinowski, K.1
Gould, I.R.2
Myers, A.B.3
-
34
-
-
0001374112
-
-
Kulinowski, K.; Gould, I. R.; Ferns, N. S.; Myers, A. B. J. Phys. Chem. 1995, 99, 17715.
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 17715
-
-
Kulinowski, K.1
Gould, I.R.2
Ferns, N.S.3
Myers, A.B.4
-
35
-
-
0001307057
-
-
(a) Cherepy, N. J.; Shreve, A. P.; Moore, L. J.; Boxer, S. G.; Mathies, R. A. J. Phys. Chem. B1997, 101, 3250.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 3250
-
-
Cherepy, N.J.1
Shreve, A.P.2
Moore, L.J.3
Boxer, S.G.4
Mathies, R.A.5
-
37
-
-
0001076558
-
-
Reid, P. J.; Shreve, A. P.; Mathies, R. A. J. Phys. Chem. 1993, 97, 12691.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 12691
-
-
Reid, P.J.1
Shreve, A.P.2
Mathies, R.A.3
-
39
-
-
0000678850
-
-
(e) Myers, A. B.; Harris, R. A.; Mathies, R. A. J. Chem. Phys. 1983, 79, 603.
-
(1983)
J. Chem. Phys.
, vol.79
, pp. 603
-
-
Myers, A.B.1
Harris, R.A.2
Mathies, R.A.3
-
44
-
-
0000952181
-
-
(e) Shin, K.-S. K.; Clark, R. J. H.; Zink, J. I. J. Am. Chem. Soc. 1990, 112, 3754.
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 3754
-
-
Shin, K.-S.K.1
Clark, R.J.H.2
Zink, J.I.3
-
45
-
-
0000058880
-
-
Britt, B. M.; McHale, J. L.; Friedrich, D. M. J. Phys. Chem. 1995, 99, 6347.
-
(1995)
Phys. Chem.
, vol.99
, pp. 6347
-
-
Britt, B.M.1
McHale, J.L.2
Friedrich, D.M.J.3
-
48
-
-
33748568216
-
-
(b) Fraga, E.; Webb, M. A.; Loppnow, G. R. J. Phys. Chem. 1996, 100, 3278.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 3278
-
-
Fraga, E.1
Webb, M.A.2
Loppnow, G.R.3
-
49
-
-
0031190923
-
-
Esposito, A. P.; Foster, C. E.; Beckman, R. A.; Reid, P. J. J. Phys. Chem. A 1997, 101, 5309.
-
(1997)
J. Phys. Chem. A
, vol.101
, pp. 5309
-
-
Esposito, A.P.1
Foster, C.E.2
Beckman, R.A.3
Reid, P.J.4
-
50
-
-
0031553329
-
-
Kwok, W. M.; Phillips, D. L.; Yeung, P. K.; Van, V. W. J. Phys. Chem. A 1997, 707, 9286.
-
(1997)
J. Phys. Chem. A
, vol.707
, pp. 9286
-
-
Kwok, W.M.1
Phillips, D.L.2
Yeung, P.K.3
Van, V.W.4
-
51
-
-
85037482976
-
-
note
-
Two different isomers were prepared and studied separately: the syn isomer shown in eq 1 and an anti isomer in which the second tertbutyl group is found on the nitrogen furthest from that on which the first tert-butyl is found. Qualitatively similar results were found for the anti but have not been analyzed in detail. The Raman spectrum and the intervalence absorbance line shape of the anti isomer, along with a spectral fit, are reported in the supplemental section of this work.
-
-
-
-
52
-
-
0003447441
-
-
Academic Press: San Diego, CA
-
(a) Lin-Vien, D.; Colthup, N. B.; Fateley, W. G.; Grasselli, J. G. Infrared and Raman Characteristic Frequencies of Organic Molecules; Academic Press: San Diego, CA, 1991.
-
(1991)
Infrared and Raman Characteristic Frequencies of Organic Molecules
-
-
Lin-Vien, D.1
Colthup, N.B.2
Fateley, W.G.3
Grasselli, J.G.4
-
53
-
-
33847089654
-
-
(b) Ackermann, M. N.; Kou, L.J.; Richter, J. M.; Willett, R. M. Inorg. Chem. 1977, 76, 1298.
-
(1977)
Inorg. Chem.
, vol.76
, pp. 1298
-
-
Ackermann, M.N.1
Kou, L.J.2
Richter, J.M.3
Willett, R.M.4
-
55
-
-
85037461326
-
-
note
-
-1 vibrations almost certainly are more complicated than assignment to a "pure" stretch would imply.
-
-
-
-
56
-
-
85037470045
-
-
+ laser, Spex Triplemate monochromator, and CCD detection
-
+ laser, Spex Triplemate monochromator, and CCD detection.
-
-
-
-
57
-
-
36549092030
-
-
Dudik, J. M.; Johnson, C. R.; Asher, S. A. J. Chem. Phys. 1985, 82, 1732.
-
(1985)
J. Chem. Phys.
, vol.82
, pp. 1732
-
-
Dudik, J.M.1
Johnson, C.R.2
Asher, S.A.3
-
59
-
-
85037482054
-
-
s terms correspond to a high temperature, slow-modulation limit of stochastic theory and are equivalent in the frequency domain to convolution with a Gaussian line shape.
-
s terms correspond to a high temperature, slow-modulation limit of stochastic theory and are equivalent in the frequency domain to convolution with a Gaussian line shape.
-
-
-
-
60
-
-
85037453788
-
-
00 at zero for purposes of spectral simulations.
-
00 at zero for purposes of spectral simulations.
-
-
-
-
62
-
-
33845373449
-
-
Brunschwig, B. S.; Ehrenson, S.; Sutin, N. J. Phys. Chem. 1986, 90, 3657.
-
(1986)
J. Phys. Chem.
, vol.90
, pp. 3657
-
-
Brunschwig, B.S.1
Ehrenson, S.2
Sutin, N.3
-
63
-
-
0030624708
-
-
Unfortunately, we have been unable to apply Stark spectroscopy to these systems because of both their air sensitivity and the need for supporting electrolyte (which often precludes dielectrically stable glass formation). For reviews of applications of this technique to other class II ions, see the following, (a) Bublitz, G. U.; Boxer, S. G. Anna. Rev. Phys. Chem. 1997, 48, 213.
-
(1997)
Anna. Rev. Phys. Chem.
, vol.48
, pp. 213
-
-
Bublitz, G.U.1
Boxer, S.G.2
-
64
-
-
0001318490
-
-
(b) Vance, F. W.; Williams, R. D.; Hupp, J. T. Int. Rev. Phys. Chem. 1998, 77, 307-329.
-
(1998)
Int. Rev. Phys. Chem.
, vol.77
, pp. 307-329
-
-
Vance, F.W.1
Williams, R.D.2
Hupp, J.T.3
-
65
-
-
85037482544
-
-
note
-
While there are potential difficulties in defining dipole moments for charged species, the difference in dipole moment (ground state vs excited state) is a well-defined quantity and, therefore, is invariant with changes in coordinate system or changes in counterion distribution.
-
-
-
-
66
-
-
85037470840
-
-
note
-
-1.
-
-
-
-
67
-
-
85037481845
-
-
note
-
8 × Δ
-
-
-
-
68
-
-
0000610701
-
-
Nelsen, S. F.; Frigo, T. B.; Kim, Y.; Thompson-Colon, J. A. J. Am. Chem. Soc. 1986, 108, 7926.
-
(1986)
J. Am. Chem. Soc.
, vol.108
, pp. 7926
-
-
Nelsen, S.F.1
Frigo, T.B.2
Kim, Y.3
Thompson-Colon, J.A.4
-
69
-
-
85037480790
-
-
note
-
s.
-
-
-
-
70
-
-
85037486055
-
-
note
-
2 so that large intensities are expected for large Raman shifts (although strictly only for frequencies less than Γ).
-
-
-
-
71
-
-
85037475674
-
-
note
-
s and are not high enough in frequency to mimic the large F values that we have obtained.
-
-
-
-
72
-
-
0000544154
-
-
5 For a discussion of the effects of partial and complete ion pairing upon intervalence absorption line shapes and energies, see the following. Blackbourn, R. L.; Hupp, J. T. J. Phys. Chem. 1990, 94, 1788.
-
(1990)
J. Phys. Chem.
, vol.94
, pp. 1788
-
-
Blackbourn, R.L.1
Hupp, J.T.2
-
73
-
-
85037459892
-
-
FORTRAN code for calculating absolute cross sections was obtained courtesy of Prof. Anne Myers at the University of Rochester
-
FORTRAN code for calculating absolute cross sections was obtained courtesy of Prof. Anne Myers at the University of Rochester.
-
-
-
-
74
-
-
85037445806
-
-
note
-
-Γt) + t/τ where T is the temperature and D and Λ are used to describe the characteristic magnitude and frequency of the solvent perturbation, respectively. In this equation, the real part contributes spectral broadening while the imaginary part contributes the Franck-Condon shift.
-
-
-
-
75
-
-
85037484504
-
-
note
-
2/molecule.
-
-
-
-
76
-
-
85037463995
-
-
note
-
-1 mode) that were similar to those from the previous calculation.
-
-
-
-
77
-
-
85037459301
-
-
This was done by increasing the κ value from 0.01 to 1, where κ is the line shape parameter given by Λ/D.
-
This was done by increasing the κ value from 0.01 to 1, where κ is the line shape parameter given by Λ/D.
-
-
-
-
78
-
-
85037481563
-
-
note
-
ab equals the experimentally obtained value.
-
-
-
-
79
-
-
0000497541
-
-
46 Upon moving through the curve-crossing region, the wave packet (or a fraction of the wave packet) may jump to the lower diabatic surface and continue its evolution there (see Newton, M. D.; Sutin, N. Annu. Rev. Phys. Chem. 1984, 35, 437). An accurate calculation would need to follow the wave packet evolution and keep track of curve crossing, which for the high-high-frequency vibrations present in this system might involve several oscillations. In the absence of appreciable damping, upper-surface/lower-surface wave packet interference effects might also be needed to be considered.
-
(1984)
Annu. Rev. Phys. Chem.
, vol.35
, pp. 437
-
-
Newton, M.D.1
Sutin, N.2
-
80
-
-
0000908099
-
-
The need to propagate on adiabatic surfaces has been recognized previously. In fact, adiabatic surfaces have already been used by Zink and co-workers to calculate intervalence absorption bands for mixed-valence complexes (Simoni, E.; Reber, C.; Talaga, D.; Zink, J. I. J. Phys. Client. 1993, 97, 12678.
-
(1993)
J. Phys. Client.
, vol.97
, pp. 12678
-
-
Simoni, E.1
Reber, C.2
Talaga, D.3
Zink, J.I.4
-
81
-
-
0040740492
-
-
Zink, J. I.; Reber, C. Coord. Chem. Rev. 1991, 111, 1.). Adaptation and extension of their approach to include absolute scattering cross sections, several vibrational modes, detailed solvent reorganizational effects, and detailed dephasing effects would almost certainly resolve the problems encountered here. Their analysis also elegantly handles wave packet curve-crossing and partial curve-crossing effects. Wave packet propagation on adiabatic surfaces (although not yet extended to the calculation of absorbance and Raman excitation profiles) has also been addressed by Coalson and co-workers. See, for example, the following.
-
(1991)
Coord. Chem. Rev.
, vol.111
, pp. 1
-
-
Zink, J.I.1
Reber, C.2
-
83
-
-
85037456401
-
-
note
-
-1.
-
-
-
-
84
-
-
85037477608
-
-
2, where f is a force constant and Δa is the change in bond length.
-
2, where f is a force constant and Δa is the change in bond length.
-
-
-
-
85
-
-
85037462284
-
-
-1 and a transition length of 0.84 Å.
-
-1 and a transition length of 0.84 Å.
-
-
-
-
86
-
-
85037468768
-
-
note
-
k) between the minima on the adiabatic surfaces is less than the displacement between the minima on the diabatic surfaces (see Figure 3). However, this correction is comparatively small and has been ignored.
-
-
-
-
87
-
-
0003065006
-
-
For a similar analysis of an electrode reaction, see the following. Selmarten, D. C.; Hupp, J. T. J. Chem. Soc., Faraday Trans. 1996, 92, 3909.
-
(1996)
Chem. Soc., Faraday Trans.
, vol.92
, pp. 3909
-
-
Selmarten, D.C.1
Hupp, J.T.J.2
-
88
-
-
85037479406
-
-
f(FC) is equation presented
-
f(FC) is equation presented
-
-
-
-
92
-
-
0001619747
-
-
For a similar analysis, see the following. Brunschwig, B. S.; Logan, J.; Newton, M. D.; Sutin, N. J. Am. Chem. Soc. 1980, 102, 5798.
-
(1980)
J. Am. Chem. Soc.
, vol.102
, pp. 5798
-
-
Brunschwig, B.S.1
Logan, J.2
Newton, M.D.3
Sutin, N.4
-
93
-
-
85037473267
-
-
note
-
s. Quartic surfaces; on the other hand, can yield asymmetrical IVCT line shapes similar to those encountered experimentally. It should be noted, however, that purely harmonic surfaces can also lead to asymmetrical line shapes if large vibrational frequencies are employed.
-
-
-
-
94
-
-
85037487781
-
-
note
-
-1.
-
-
-
-
95
-
-
85037476003
-
-
tot where C is the quartic factor, taken to be 0.2.
-
tot where C is the quartic factor, taken to be 0.2.
-
-
-
|