메뉴 건너뛰기




Volumn 48, Issue 2, 2005, Pages 415-429

Variable selection in neural network regression models with dependent data: A subsampling approach

Author keywords

Artificial neural networks; Dependent data; Subsampling

Indexed keywords

APPROXIMATION THEORY; DATA ACQUISITION; DATA REDUCTION; MATHEMATICAL MODELS; MATRIX ALGEBRA; MONTE CARLO METHODS; REGRESSION ANALYSIS; STATISTICAL METHODS;

EID: 9944262843     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2004.01.004     Document Type: Article
Times cited : (26)

References (18)
  • 1
    • 0033105287 scopus 로고    scopus 로고
    • Model selection in neural networks
    • Anders, U., Korn, O., 1999. Model selection in neural networks. Neural Networks 12, 309-323.
    • (1999) Neural Networks , vol.12 , pp. 309-323
    • Anders, U.1    Korn, O.2
  • 2
    • 0027599793 scopus 로고
    • Universal approximation bounds for superposition of a sigmoidal function
    • Barron, A.R., 1993. Universal approximation bounds for superposition of a sigmoidal function. IEEE Trans. Inform. Theory 39, 930-945.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 5
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: A comparative study using the airline data
    • Faraway, J., Chatfield, C., 1998. Time series forecasting with neural networks: a comparative study using the airline data. Appl. Statist. 47, 231-250.
    • (1998) Appl. Statist. , vol.47 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 7
    • 0024880831 scopus 로고
    • Multi-layer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., White, H., 1989. Multi-layer feedforward networks are universal approximators. Neural Networks 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 8
    • 84948516717 scopus 로고
    • Artificial neural networks: An econometric perspective
    • Kuan, C., White, H., 1994. Artificial neural networks: an econometric perspective. Econometric Rev. 13, 1-91.
    • (1994) Econometric Rev. , vol.13 , pp. 1-91
    • Kuan, C.1    White, H.2
  • 9
    • 9944244670 scopus 로고    scopus 로고
    • The hidden layer size in feedforward neural networks: A statistical point of view
    • Perna, C., Giordano, F., 2001. The hidden layer size in feedforward neural networks: a statistical point of view. Metron LIX, 217-227.
    • (2001) Metron , vol.59 , pp. 217-227
    • Perna, C.1    Giordano, F.2
  • 11
    • 0027662338 scopus 로고
    • Pruning algorithms - A survey
    • Reed, R., 1993. Pruning algorithms - a survey. IEEE Trans. Neural Networks 4, 740-747.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 740-747
    • Reed, R.1
  • 12
    • 0033365782 scopus 로고    scopus 로고
    • Neural model identification, variable selection and model adeguacy
    • Refenes, A.P.N., Zapranis, A.D., 1999. Neural model identification, variable selection and model adeguacy. J. Forecasting 18, 299-332.
    • (1999) J. Forecasting , vol.18 , pp. 299-332
    • Refenes, A.P.N.1    Zapranis, A.D.2
  • 14
    • 0000824767 scopus 로고
    • On the asymptotic accuracy of Efron's bootstrap
    • Singh, K., 1981. On the asymptotic accuracy of Efron's bootstrap. Ann. Statist. 9, 1187-1195.
    • (1981) Ann. Statist. , vol.9 , pp. 1187-1195
    • Singh, K.1
  • 15
    • 0004169853 scopus 로고
    • A comparison of some error estimates for neural network models
    • Department of Preventive and Biostatistics, University of Toronto
    • Tibshirani, R., 1995. A comparison of some error estimates for neural network models. Research Report, Department of Preventive and Biostatistics, University of Toronto.
    • (1995) Research Report
    • Tibshirani, R.1
  • 16
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • White, H., 1989. Learning in artificial neural networks: a statistical perspective. Neural Comput. 1, 425-464.
    • (1989) Neural Comput. , vol.1 , pp. 425-464
    • White, H.1
  • 18
    • 0035391531 scopus 로고    scopus 로고
    • Statistical inference, the bootstrap, and neural-network modeling with application to foreign exchange rates
    • White, H., Racine, J., 2001. Statistical inference, the bootstrap, and neural-network modeling with application to foreign exchange rates. IEEE Trans. Neural Networks 12, 657-673.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 657-673
    • White, H.1    Racine, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.