메뉴 건너뛰기




Volumn 51, Issue 11, 2004, Pages 598-602

Robust Stability of 2-D Discrete Systems Described by the Fornasini—Marchesini Second Model Employing Quantization/Overflow Nonlinearities

Author keywords

Asymntotic stability; finite worldlength effects; linear matrix inequality; Lyapunov methods; two dimensional,(2 D) discrete systems; uncertain systems

Indexed keywords

ASYMPTOTIC STABILITY; CONTROL NONLINEARITIES; LYAPUNOV METHODS; MATHEMATICAL MODELS; MATRIX ALGEBRA; ROBUSTNESS (CONTROL SYSTEMS); SYSTEM STABILITY; THEOREM PROVING; UNCERTAIN SYSTEMS;

EID: 9744256319     PISSN: 15497747     EISSN: 15583791     Source Type: Journal    
DOI: 10.1109/TCSII.2004.836880     Document Type: Article
Times cited : (65)

References (24)
  • 1
    • 0004202906 scopus 로고
    • Two-Dimensional Linear Systems
    • Berlin, Germany: Springer-Verlag
    • T. Kaczorek, Two-Dimensional Linear Systems. Berlin, Germany: Springer-Verlag, 1985.
    • (1985)
    • Kaczorek, T.1
  • 2
    • 34250287560 scopus 로고
    • Doubly indexed dynamical systems: State-space models and structural properties
    • E. Fornasini and G. Marchesini, “Doubly indexed dynamical systems: State-space models and structural properties,” Math. Syst. Theory, vol. 12, pp. 59-72, 1978.
    • (1978) Math. Syst. Theory , vol.12 , pp. 59-72
    • Fornasini, E.1    Marchesini, G.2
  • 3
    • 0027547748 scopus 로고
    • 2-D Lyapunov equation and filter design based on the Fornasini-Marchesini second model
    • Feb
    • T. Hinamoto, “2-D Lyapunov equation and filter design based on the Fornasini-Marchesini second model,” IEEE Trans. Circuits Syst. I, vol. 40, pp. 102-110, Feb. 1993.
    • (1993) IEEE Trans. Circuits Syst. I , vol.40 , pp. 102-110
    • Hinamoto, T.1
  • 4
    • 0028531379 scopus 로고
    • On a Lyapunov approach to stability analysis of 2-D digital filters
    • Oct
    • W.-S. Lu, “On a Lyapunov approach to stability analysis of 2-D digital filters,” IEEE Trans. Circuits Syst. I, vol. 41, pp. 665-669, Oct. 1994.
    • (1994) IEEE Trans. Circuits Syst. I , vol.41 , pp. 665-669
    • Lu, W.-S.1
  • 5
    • 0028517166 scopus 로고
    • Some new results on stability robustness of 2-D digital filters
    • W.-S. Lu, “Some new results on stability robustness of 2-D digital filters,” Multidim. Syst. Signal Processing, no. 5, pp. 345-361, 1994.
    • (1994) Multidim. Syst. Signal Processing , vol.5 , pp. 345-361
    • Lu, W.-S.1
  • 6
    • 0029263639 scopus 로고
    • On robust stability of 2-D discrete systems
    • Mar
    • W.-S. Lu, “On robust stability of 2-D discrete systems,” IEEE Trans. Automat. Contr., vol. 40, pp. 502-506, Mar. 1995.
    • (1995) IEEE Trans. Automat. Contr. , vol.40 , pp. 502-506
    • Lu, W.-S.1
  • 7
    • 0034243275 scopus 로고    scopus 로고
    • On stability analysis of 2-D systems based on 2-D Lyapunov matrix inequalities
    • Aug
    • T. Ooba, “On stability analysis of 2-D systems based on 2-D Lyapunov matrix inequalities,” IEEE Trans. Circuits Syst. I, vol. 47, pp. 1263-1265, Aug. 2000.
    • (2000) IEEE Trans. Circuits Syst. I , vol.47 , pp. 1263-1265
    • Ooba, T.1
  • 8
    • 0031094558 scopus 로고    scopus 로고
    • Stability of 2-D discrete systems described by the Fornasini-Marchesini second model
    • Mar
    • T. Hinamoto, “Stability of 2-D discrete systems described by the Fornasini-Marchesini second model,” IEEE Trans. Circuits Syst. I, vol. 34, pp. 254-257, Mar. 1997.
    • (1997) IEEE Trans. Circuits Syst. I , vol.34 , pp. 254-257
    • Hinamoto, T.1
  • 9
    • 0032072968 scopus 로고    scopus 로고
    • Lyapunov stability of two-dimensional digital filters with overflow nonlinearities
    • May
    • D. Liu, “Lyapunov stability of two-dimensional digital filters with overflow nonlinearities,” IEEE Trans. Circuits Syst. I, vol. 45, pp. 574-577, May 1998.
    • (1998) IEEE Trans. Circuits Syst. I , vol.45 , pp. 574-577
    • Liu, D.1
  • 10
    • 0035330782 scopus 로고    scopus 로고
    • Stability analysis of 2-D digital filters described by the Fornasini-Marchesini second model using overflow nonlinearities
    • May
    • H. Kar and V. Singh, “Stability analysis of 2-D digital filters described by the Fornasini-Marchesini second model using overflow nonlinearities,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 612-617, May 2001.
    • (2001) IEEE Trans. Circuits Syst. I , vol.48 , pp. 612-617
    • Kar, H.1    Singh, V.2
  • 11
    • 0035340069 scopus 로고    scopus 로고
    • Stability analysis of 1-D and 2-D fixed-point state-space digital filters using any combination of overflow and quantization nonlinearities
    • May
    • H. Kar and V. Singh, “Stability analysis of 1-D and 2-D fixed-point state-space digital filters using any combination of overflow and quantization nonlinearities,” IEEE Trans. Signal Processing, vol. 49, pp. 1097-1105, May 2001.
    • (2001) IEEE Trans. Signal Processing , vol.49 , pp. 1097-1105
    • Kar, H.1    Singh, V.2
  • 12
    • 0033226167 scopus 로고    scopus 로고
    • Stability analysis and stabilization of uncertain two-dimensional discrete systems: An LMI approach
    • Nov
    • C. Du and L. Xie, “Stability analysis and stabilization of uncertain twodimensional discrete systems: An LMI approach,” IEEE Trans. Circuits Syst. I, vol. 46, pp. 1371-1374, Nov. 1999.
    • (1999) IEEE Trans. Circuits Syst. I , vol.46 , pp. 1371-1374
    • Du, C.1    Xie, L.2
  • 13
    • 0035467285 scopus 로고    scopus 로고
    • Robust optimal guaranteed cost control for 2-D discrete systems
    • Sept
    • X. Guan, C. Long, and G. Duan, “Robust optimal guaranteed cost control for 2-D discrete systems,” Proc.IEE,-Control Theory Applicat., vol. 148, pp. 355-361, Sept. 2001.
    • (2001) Proc.IEE,-Control Theory Applicat. , vol.148 , pp. 355-361
    • Guan, X.1    Long, C.2    Duan, G.3
  • 18
    • 0026901927 scopus 로고
    • ∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback
    • Aug
    • ∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback,” IEEE Trans. Automat. Contr., vol. 37, pp. 1253-1256, Aug. 1992.
    • (1992) IEEE Trans. Automat. Contr. , vol.37 , pp. 1253-1256
    • Xie, L.1    Fu, M.2    De Souza, C.E.3
  • 19
    • 0036688392 scopus 로고    scopus 로고
    • ∞ filtering with regional pole assignment for uncertain discrete-time systems
    • Aug
    • ∞ filtering with regional pole assignment for uncertain discrete-time systems,” IEEE Trans. Circuits Syst. I, vol. 49, pp. 1236-1241, Aug. 2002.
    • (2002) IEEE Trans. Circuits Syst. I , vol.49 , pp. 1236-1241
    • Yang, F.1    Hung, Y.S.2
  • 20
    • 0036860784 scopus 로고    scopus 로고
    • Positive real control for uncertain two-dimensional systems
    • Nov
    • S. Xu, J. Lam, Z. Lin, and K. Galkowski, “Positive real control for uncertain two-dimensional systems,” IEEE Trans. Circuits Syst. I, vol. 49, pp. 1659-1666, Nov. 2002.
    • (2002) IEEE Trans. Circuits Syst. I , vol.49 , pp. 1659-1666
    • Xu, S.1    Lam, J.2    Lin, Z.3    Galkowski, K.4
  • 21
    • 0026204150 scopus 로고
    • A 2-D system approach to river pollution modeling
    • E. Fornasini, “A 2-D system approach to river pollution modeling,” Multidim. Syst. Signal Processing, vol. 2, pp. 233-265, 1991.
    • (1991) Multidim. Syst. Signal Processing , vol.2 , pp. 233-265
    • Fornasini, E.1
  • 22
    • 4243422080 scopus 로고    scopus 로고
    • Stability of asynchronous twodimensional Fornasini-Marchesini dynamical systems
    • A. Bhaya, E. Kaszkurewicz, and Y. Su, “Stability of asynchronous twodimensional Fornasini-Marchesini dynamical systems,” Linear Algebra Applicat., vol. 332, pp. 257-263, 2001.
    • (2001) Linear Algebra Applicat. , vol.332 , pp. 257-263
    • Bhaya, A.1    Kaszkurewicz, E.2    Su, Y.3
  • 23
    • 0003595806 scopus 로고
    • Linear Matrix Inequalities in System and Control Theory
    • Philadelphia, PA: SIAM
    • S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: SIAM, 1994.
    • (1994)
    • Boyd, S.1    El Ghaoui, L.2    Feron, E.3    Balakrishnan, V.4
  • 24
    • 84987709420 scopus 로고
    • LMI Control Toolbox-for Use With Matlab
    • Natick, MA: The MATH Works Inc.
    • P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox-for Use With Matlab. Natick, MA: The MATH Works Inc., 1995.
    • (1995)
    • Gahinet, P.1    Nemirovski, A.2    Laub, A.J.3    Chilali, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.