-
1
-
-
9544237099
-
Observation of chaos in a nonlinear oscillator with delay: Numerical study
-
Awrejcewicz J, Wojewoda J. Observation of chaos in a nonlinear oscillator with delay: numerical study. KSME J 1989;3(1):15-24.
-
(1989)
KSME J
, vol.3
, Issue.1
, pp. 15-24
-
-
Awrejcewicz, J.1
Wojewoda, J.2
-
2
-
-
35949037738
-
Kolmogorov entropy and numerical experiment
-
Benettin G, Galgani L, Strelcyn JM. Kolmogorov entropy and numerical experiment. Phys Rev A 1976;14:2338-45.
-
(1976)
Phys Rev A
, vol.14
, pp. 2338-2345
-
-
Benettin, G.1
Galgani, L.2
Strelcyn, J.M.3
-
3
-
-
0018989294
-
Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, part I: Theory
-
Benettin G, Galgani L, Giorgilli A, Strelcyn JM. Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, part I: theory. Meccanica 1980; 15:9-20.
-
(1980)
Meccanica
, vol.15
, pp. 9-20
-
-
Benettin, G.1
Galgani, L.2
Giorgilli, A.3
Strelcyn, J.M.4
-
4
-
-
0018992908
-
Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, part II: Numerical application
-
Benettin G, Galgani L, Giorgilli A, Strelcyn JM. Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, part II: numerical application. Meccanica 1980;15:21-30.
-
(1980)
Meccanica
, vol.15
, pp. 21-30
-
-
Benettin, G.1
Galgani, L.2
Giorgilli, A.3
Strelcyn, J.M.4
-
5
-
-
6444240297
-
Lyapunov exponents from a time series
-
Eckmann JP, Kamphorst SO, Ruelle D, Ciliberto S. Lyapunov exponents from a time series. Phys Rev Lett 1986;34(9):4971-9.
-
(1986)
Phys Rev Lett
, vol.34
, Issue.9
, pp. 4971-4979
-
-
Eckmann, J.P.1
Kamphorst, S.O.2
Ruelle, D.3
Ciliberto, S.4
-
6
-
-
0002256723
-
Stability theory of synchronized motion in coupled-oscillator systems
-
Fujisaka H, Yamada T. Stability theory of synchronized motion in coupled-oscillator systems. Prog Theor Phys 1983;69(1):32-47.
-
(1983)
Prog Theor Phys
, vol.69
, Issue.1
, pp. 32-47
-
-
Fujisaka, H.1
Yamada, T.2
-
7
-
-
0002591468
-
A two dimensional map with a strange attractor
-
Henon M. A two dimensional map with a strange attractor. Commun Math Phys 1976;50:69.
-
(1976)
Commun Math Phys
, vol.50
, pp. 69
-
-
Henon, M.1
-
8
-
-
0002519122
-
The applicability of the third integral of the motion: Some numerical results
-
Henon M, Heiles C. The applicability of the third integral of the motion: some numerical results. Astron J 1964;69:77.
-
(1964)
Astron J
, vol.69
, pp. 77
-
-
Henon, M.1
Heiles, C.2
-
9
-
-
0001338470
-
Dynamics of oscillators with impact and friction
-
Hinrichs N, Oestreich M, Popp K. Dynamics of oscillators with impact and friction. Chaos, Solitons & Fractals 1997;4(8):535-58.
-
(1997)
Chaos, Solitons & Fractals
, vol.4
, Issue.8
, pp. 535-558
-
-
Hinrichs, N.1
Oestreich, M.2
Popp, K.3
-
10
-
-
0029681234
-
Ogorzalek. Monotone synchronization of chaos
-
Kapitaniak T, Sekieta M, Ogorzalek. Monotone synchronization of chaos. Bifurcat Chaos 1996;6:211-5.
-
(1996)
Bifurcat Chaos
, vol.6
, pp. 211-215
-
-
Kapitaniak, T.1
Sekieta, M.2
-
11
-
-
0000442708
-
Calculation of Lyapunov exponents for dynamical systems with discontinuities
-
Müller P. Calculation of Lyapunov exponents for dynamical systems with discontinuities. Chaos, Solitons & Fractals 1995;5(9): 1671-81.
-
(1995)
Chaos, Solitons & Fractals
, vol.5
, Issue.9
, pp. 1671-1681
-
-
Müller, P.1
-
13
-
-
0000543733
-
A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems
-
Oseledec VI. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans Moscow Math Soc 1968;19:197-231.
-
(1968)
Trans Moscow Math Soc
, vol.19
, pp. 197-231
-
-
Oseledec, V.I.1
-
14
-
-
0000905883
-
Identification of true and spurious Lyapunov exponents from time series
-
Parlitz U. Identification of true and spurious Lyapunov exponents from time series. J Bifurcat Chaos 1992;2(1):155-65.
-
(1992)
J Bifurcat Chaos
, vol.2
, Issue.1
, pp. 155-165
-
-
Parlitz, U.1
-
16
-
-
0023647905
-
Chaos in a mechanism with time delays under parametric and external excitation
-
Plauth RH, Hsieh J-C. Chaos in a mechanism with time delays under parametric and external excitation. J Sound Vibrat 1987;114(1):73-90.
-
(1987)
J Sound Vibrat
, vol.114
, Issue.1
, pp. 73-90
-
-
Plauth, R.H.1
Hsieh, J.-C.2
-
17
-
-
43949166788
-
A practical method for calculating largest Lyapunov exponents from small data sets
-
Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 1993;65(1,2):117-34.
-
(1993)
Physica D
, vol.65
, Issue.1-2
, pp. 117-134
-
-
Rosenstein, M.T.1
Collins, J.J.2
De Luca, C.J.3
-
18
-
-
0001394076
-
Measurement of the Lyapunov spectrum from a chaotic time series
-
Sano M, Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series. Phys Rev Lett 1985;55:1082-5.
-
(1985)
Phys Rev Lett
, vol.55
, pp. 1082-1085
-
-
Sano, M.1
Sawada, Y.2
-
19
-
-
0000672504
-
A numerical approach to ergodic problem of dissipative dynamical systems
-
Shimada I, Nagashima T. A numerical approach to ergodic problem of dissipative dynamical systems. Prog Theor Phys 1979;61(6):1605-16.
-
(1979)
Prog Theor Phys
, vol.61
, Issue.6
, pp. 1605-1616
-
-
Shimada, I.1
Nagashima, T.2
-
20
-
-
0000960061
-
Using chaos synchronization to estimate the largest Lyapunov exponent of non-smooth systems
-
Stefanski A, Kapitaniak T. Using chaos synchronization to estimate the largest Lyapunov exponent of non-smooth systems. Discrete Dyn Nat Soc 2000;4:207-15.
-
(2000)
Discrete Dyn Nat Soc
, vol.4
, pp. 207-215
-
-
Stefanski, A.1
Kapitaniak, T.2
-
21
-
-
0034559501
-
Estimation of the largest Lyapunov exponent in systems with impacts
-
Stefanski A. Estimation of the largest Lyapunov exponent in systems with impacts. Chaos, Solitons & Fractals 2000;11(15):2443-51.
-
(2000)
Chaos, Solitons & Fractals
, vol.11
, Issue.15
, pp. 2443-2451
-
-
Stefanski, A.1
-
22
-
-
0041645137
-
Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization
-
Stefanski A, Kapitaniak T. Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization. Chaos, Solitons & Fractals 2003;15:233-44.
-
(2003)
Chaos, Solitons & Fractals
, vol.15
, pp. 233-244
-
-
Stefanski, A.1
Kapitaniak, T.2
-
23
-
-
0000779360
-
Detecting strange attractors in turbulence
-
Takens F. Detecting strange attractors in turbulence. Lect Notes Math 1981;898:366.
-
(1981)
Lect Notes Math
, vol.898
, pp. 366
-
-
Takens, F.1
-
25
-
-
0002579708
-
Quantifying chaos with Lyapunov exponents
-
Holden V, editor. Manchester: Manchester University Press
-
Wolf A. Quantifying chaos with Lyapunov exponents. In: Holden V, editor. Chaos. Manchester: Manchester University Press; 1986. p. 273-90.
-
(1986)
Chaos
, pp. 273-290
-
-
Wolf, A.1
|