메뉴 건너뛰기




Volumn 23, Issue 5, 2005, Pages 1651-1659

Evaluation of the largest Lyapunov exponent in dynamical systems with time delay

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CHAOS THEORY; DIFFERENTIAL EQUATIONS; EQUATIONS OF MOTION; FEEDBACK; MATHEMATICAL MODELS; NONLINEAR CONTROL SYSTEMS; PARAMETER ESTIMATION; PERTURBATION TECHNIQUES; SYNCHRONIZATION; THEOREM PROVING;

EID: 9544230703     PISSN: 09600779     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0960-0779(04)00428-X     Document Type: Article
Times cited : (85)

References (25)
  • 1
    • 9544237099 scopus 로고
    • Observation of chaos in a nonlinear oscillator with delay: Numerical study
    • Awrejcewicz J, Wojewoda J. Observation of chaos in a nonlinear oscillator with delay: numerical study. KSME J 1989;3(1):15-24.
    • (1989) KSME J , vol.3 , Issue.1 , pp. 15-24
    • Awrejcewicz, J.1    Wojewoda, J.2
  • 2
    • 35949037738 scopus 로고
    • Kolmogorov entropy and numerical experiment
    • Benettin G, Galgani L, Strelcyn JM. Kolmogorov entropy and numerical experiment. Phys Rev A 1976;14:2338-45.
    • (1976) Phys Rev A , vol.14 , pp. 2338-2345
    • Benettin, G.1    Galgani, L.2    Strelcyn, J.M.3
  • 3
    • 0018989294 scopus 로고
    • Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, part I: Theory
    • Benettin G, Galgani L, Giorgilli A, Strelcyn JM. Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, part I: theory. Meccanica 1980; 15:9-20.
    • (1980) Meccanica , vol.15 , pp. 9-20
    • Benettin, G.1    Galgani, L.2    Giorgilli, A.3    Strelcyn, J.M.4
  • 4
    • 0018992908 scopus 로고
    • Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, part II: Numerical application
    • Benettin G, Galgani L, Giorgilli A, Strelcyn JM. Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them, part II: numerical application. Meccanica 1980;15:21-30.
    • (1980) Meccanica , vol.15 , pp. 21-30
    • Benettin, G.1    Galgani, L.2    Giorgilli, A.3    Strelcyn, J.M.4
  • 6
    • 0002256723 scopus 로고
    • Stability theory of synchronized motion in coupled-oscillator systems
    • Fujisaka H, Yamada T. Stability theory of synchronized motion in coupled-oscillator systems. Prog Theor Phys 1983;69(1):32-47.
    • (1983) Prog Theor Phys , vol.69 , Issue.1 , pp. 32-47
    • Fujisaka, H.1    Yamada, T.2
  • 7
    • 0002591468 scopus 로고
    • A two dimensional map with a strange attractor
    • Henon M. A two dimensional map with a strange attractor. Commun Math Phys 1976;50:69.
    • (1976) Commun Math Phys , vol.50 , pp. 69
    • Henon, M.1
  • 8
    • 0002519122 scopus 로고
    • The applicability of the third integral of the motion: Some numerical results
    • Henon M, Heiles C. The applicability of the third integral of the motion: some numerical results. Astron J 1964;69:77.
    • (1964) Astron J , vol.69 , pp. 77
    • Henon, M.1    Heiles, C.2
  • 10
    • 0029681234 scopus 로고    scopus 로고
    • Ogorzalek. Monotone synchronization of chaos
    • Kapitaniak T, Sekieta M, Ogorzalek. Monotone synchronization of chaos. Bifurcat Chaos 1996;6:211-5.
    • (1996) Bifurcat Chaos , vol.6 , pp. 211-215
    • Kapitaniak, T.1    Sekieta, M.2
  • 11
    • 0000442708 scopus 로고
    • Calculation of Lyapunov exponents for dynamical systems with discontinuities
    • Müller P. Calculation of Lyapunov exponents for dynamical systems with discontinuities. Chaos, Solitons & Fractals 1995;5(9): 1671-81.
    • (1995) Chaos, Solitons & Fractals , vol.5 , Issue.9 , pp. 1671-1681
    • Müller, P.1
  • 13
    • 0000543733 scopus 로고
    • A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems
    • Oseledec VI. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans Moscow Math Soc 1968;19:197-231.
    • (1968) Trans Moscow Math Soc , vol.19 , pp. 197-231
    • Oseledec, V.I.1
  • 14
    • 0000905883 scopus 로고
    • Identification of true and spurious Lyapunov exponents from time series
    • Parlitz U. Identification of true and spurious Lyapunov exponents from time series. J Bifurcat Chaos 1992;2(1):155-65.
    • (1992) J Bifurcat Chaos , vol.2 , Issue.1 , pp. 155-165
    • Parlitz, U.1
  • 16
    • 0023647905 scopus 로고
    • Chaos in a mechanism with time delays under parametric and external excitation
    • Plauth RH, Hsieh J-C. Chaos in a mechanism with time delays under parametric and external excitation. J Sound Vibrat 1987;114(1):73-90.
    • (1987) J Sound Vibrat , vol.114 , Issue.1 , pp. 73-90
    • Plauth, R.H.1    Hsieh, J.-C.2
  • 17
    • 43949166788 scopus 로고
    • A practical method for calculating largest Lyapunov exponents from small data sets
    • Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 1993;65(1,2):117-34.
    • (1993) Physica D , vol.65 , Issue.1-2 , pp. 117-134
    • Rosenstein, M.T.1    Collins, J.J.2    De Luca, C.J.3
  • 18
    • 0001394076 scopus 로고
    • Measurement of the Lyapunov spectrum from a chaotic time series
    • Sano M, Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series. Phys Rev Lett 1985;55:1082-5.
    • (1985) Phys Rev Lett , vol.55 , pp. 1082-1085
    • Sano, M.1    Sawada, Y.2
  • 19
    • 0000672504 scopus 로고
    • A numerical approach to ergodic problem of dissipative dynamical systems
    • Shimada I, Nagashima T. A numerical approach to ergodic problem of dissipative dynamical systems. Prog Theor Phys 1979;61(6):1605-16.
    • (1979) Prog Theor Phys , vol.61 , Issue.6 , pp. 1605-1616
    • Shimada, I.1    Nagashima, T.2
  • 20
    • 0000960061 scopus 로고    scopus 로고
    • Using chaos synchronization to estimate the largest Lyapunov exponent of non-smooth systems
    • Stefanski A, Kapitaniak T. Using chaos synchronization to estimate the largest Lyapunov exponent of non-smooth systems. Discrete Dyn Nat Soc 2000;4:207-15.
    • (2000) Discrete Dyn Nat Soc , vol.4 , pp. 207-215
    • Stefanski, A.1    Kapitaniak, T.2
  • 21
    • 0034559501 scopus 로고    scopus 로고
    • Estimation of the largest Lyapunov exponent in systems with impacts
    • Stefanski A. Estimation of the largest Lyapunov exponent in systems with impacts. Chaos, Solitons & Fractals 2000;11(15):2443-51.
    • (2000) Chaos, Solitons & Fractals , vol.11 , Issue.15 , pp. 2443-2451
    • Stefanski, A.1
  • 22
    • 0041645137 scopus 로고    scopus 로고
    • Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization
    • Stefanski A, Kapitaniak T. Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization. Chaos, Solitons & Fractals 2003;15:233-44.
    • (2003) Chaos, Solitons & Fractals , vol.15 , pp. 233-244
    • Stefanski, A.1    Kapitaniak, T.2
  • 23
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • Takens F. Detecting strange attractors in turbulence. Lect Notes Math 1981;898:366.
    • (1981) Lect Notes Math , vol.898 , pp. 366
    • Takens, F.1
  • 25
    • 0002579708 scopus 로고
    • Quantifying chaos with Lyapunov exponents
    • Holden V, editor. Manchester: Manchester University Press
    • Wolf A. Quantifying chaos with Lyapunov exponents. In: Holden V, editor. Chaos. Manchester: Manchester University Press; 1986. p. 273-90.
    • (1986) Chaos , pp. 273-290
    • Wolf, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.