메뉴 건너뛰기




Volumn 23, Issue 1, 2005, Pages 69-85

Color image segmentation based on adaptive local thresholds

Author keywords

Homogeneity; Image segmentation; Local thresholds; Merging; Splitting

Indexed keywords

ALGORITHMS; AUTOMATION; COLOR; GRAPH THEORY; ITERATIVE METHODS; MERGING; STATISTICAL METHODS; THREE DIMENSIONAL COMPUTER GRAPHICS; WATERSHEDS;

EID: 9544229696     PISSN: 02628856     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.imavis.2004.05.011     Document Type: Article
Times cited : (142)

References (44)
  • 4
    • 0026828885 scopus 로고
    • Computational strategies for object recognition
    • P. Suetens, P. Fua, A.J. Hanson, Computational strategies for object recognition, ACM Computing Surveys 24 (1992) 5-61.
    • (1992) ACM Computing Surveys , vol.24 , pp. 5-61
    • Suetens, P.1    Fua, P.2    Hanson, A.J.3
  • 5
    • 0022037766 scopus 로고
    • Three-dimensional object recognition
    • P. Besl, R. Jain, Three-dimensional object recognition, ACM Computing Surveys 17 (1985) 75-145.
    • (1985) ACM Computing Surveys , vol.17 , pp. 75-145
    • Besl, P.1    Jain, R.2
  • 7
    • 0036543804 scopus 로고    scopus 로고
    • Fractal Image compression with region-based functionality
    • K. Belloulata, J. Konrad, Fractal Image compression with region-based functionality, IEEE Transactions on Image Processing 11 (4) (2002) 351.
    • (2002) IEEE Transactions on Image Processing , vol.11 , Issue.4 , pp. 351
    • Belloulata, K.1    Konrad, J.2
  • 9
    • 0036779086 scopus 로고    scopus 로고
    • Adaptive texture and color segmentation for tracking moving objects
    • E. Ozyildiz, N. Krahnst-over, R. Sharm, Adaptive texture and color segmentation for tracking moving objects, Pattern Recognition 35 (2002) 2013-2029.
    • (2002) Pattern Recognition , vol.35 , pp. 2013-2029
    • Ozyildiz, E.1    Krahnst-Over, N.2    Sharm, R.3
  • 12
    • 0027658896 scopus 로고
    • A review on image segmentation techniques
    • N. Pal, S. Pal, A review on image segmentation techniques, Pattern Recognition 26 (1993) 1277-1294.
    • (1993) Pattern Recognition , vol.26 , pp. 1277-1294
    • Pal, N.1    Pal, S.2
  • 15
    • 0019728207 scopus 로고
    • Segmentation of chromatic images
    • A. Sarabi, J.K. Aggarwal, Segmentation of chromatic images, Pattern Recognition 13 (6) (1981) 417-427.
    • (1981) Pattern Recognition , vol.13 , Issue.6 , pp. 417-427
    • Sarabi, A.1    Aggarwal, J.K.2
  • 17
    • 4243843933 scopus 로고
    • An interactive facility for scene analysis research
    • Artificial Intelligent Center, Stanford Research Institute, Menlo Park, CA
    • J.M. Tenenbaum, T.D. Garvey, S. Weyl, H.C. Wolf, An interactive facility for scene analysis research. Artificial Intelligent Center, Stanford Research Institute, Menlo Park, CA, Technical Report 87, 1974.
    • (1974) Technical Report , vol.87
    • Tenenbaum, J.M.1    Garvey, T.D.2    Weyl, S.3    Wolf, H.C.4
  • 18
    • 33747797369 scopus 로고    scopus 로고
    • A hierarchical approach to color image segmentation using homogeneity
    • H.-D. Cheng, Y. Sun, A hierarchical approach to color image segmentation using homogeneity, IEEE Transactions on Image Processing 9 (12) (2000).
    • (2000) IEEE Transactions on Image Processing , vol.9 , Issue.12
    • Cheng, H.-D.1    Sun, Y.2
  • 21
    • 34250098710 scopus 로고
    • Using Canny's criteria to derive a recursively implemented optimal edge detector
    • R. Deriche, Using Canny's criteria to derive a recursively implemented optimal edge detector, International Journal of Computer Vision 1987; 167-187.
    • (1987) International Journal of Computer Vision , pp. 167-187
    • Deriche, R.1
  • 23
    • 0034246174 scopus 로고    scopus 로고
    • EdgeFlow: A technique for boundary detection and image segmentation
    • W.-Y. Ma, B.S. Manjunath, EdgeFlow: a technique for boundary detection and image segmentation, IEEE Transaction on Image Processing 9 (8) (2000).
    • (2000) IEEE Transaction on Image Processing , vol.9 , Issue.8
    • Ma, W.-Y.1    Manjunath, B.S.2
  • 24
    • 0026221493 scopus 로고
    • Split-and-merge image segmentation based on localized feature analysis and statistical tests
    • S. Chen, W. Lin, C. Chen, Split-and-merge image segmentation based on localized feature analysis and statistical tests, CVGIP: Graph, Models Image Processing 53 (1991) 457-475.
    • (1991) CVGIP: Graph, Models Image Processing , vol.53 , pp. 457-475
    • Chen, S.1    Lin, W.2    Chen, C.3
  • 25
    • 0027656836 scopus 로고
    • Homogeneity testing for unlabeled data: A performance evaluation
    • Z. Wu, Homogeneity testing for unlabeled data: a performance evaluation, CVGIP: Graph, Models Image Processing 55 (1993) 370-380.
    • (1993) CVGIP: Graph, Models Image Processing , vol.55 , pp. 370-380
    • Wu, Z.1
  • 26
    • 34250086182 scopus 로고
    • Segmenting images using localized histograms and region merging
    • R. Beveridge, et al., Segmenting images using localized histograms and region merging, Computer Vision, Graphics and Image Processing 2 (1989) 311-347.
    • (1989) Computer Vision, Graphics and Image Processing , vol.2 , pp. 311-347
    • Beveridge, R.1
  • 40
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (8) (2000) 888-905 (also Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Puerto Rico, 1997, pp. 731-737).
    • (2000) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 41
    • 0034244751 scopus 로고    scopus 로고
    • Puerto Rico
    • J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (8) (2000) 888-905 (also Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Puerto Rico, 1997, pp. 731-737).
    • (1997) Proceedings of IEEE Conference on Computer Vision and Pattern Recognition , pp. 731-737
  • 42
    • 0027697605 scopus 로고
    • An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation
    • Z. Wu, R. Leahy, An optimal graph theoretic approach to data clustering: theory and its application to image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence 15 (1993) 1101-1113.
    • (1993) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.15 , pp. 1101-1113
    • Wu, Z.1    Leahy, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.