메뉴 건너뛰기




Volumn 2923, Issue , 2004, Pages 47-60

A logic of non-monotone inductive definitions and its modularity properties

Author keywords

[No Author keywords available]

Indexed keywords

CALCULATIONS; SEMANTICS; SET THEORY; ALGEBRA; CODES (SYMBOLS); FORMAL LOGIC; INFORMATION SCIENCE; KNOWLEDGE REPRESENTATION; THEOREM PROVING;

EID: 9444276586     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (13)

References (16)
  • 1
    • 77956968984 scopus 로고
    • An introduction to inductive definitions
    • J. Barwise, editor Elsevier
    • P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathematical Logic, pages 739-782. Elsevier, 1977.
    • (1977) Handbook of Mathematical Logic , pp. 739-782
    • Aczel, P.1
  • 3
    • 84949994421 scopus 로고    scopus 로고
    • The well-founded semantics is the principle of inductive definitions
    • J. Dix, L. Farinas del Cerro, and U. Furbach, editors Springer-Verlag
    • M. Denecker. The well-founded semantics is the principle of inductive definitions. In J. Dix, L. Farinas del Cerro, and U. Furbach, editors, Logics in Artificial Intelligence, volume 1489 of Lecture Notes in Artificial Intelligence, pages 1-16. Springer-Verlag, 1998.
    • (1998) Logics in Artificial Intelligence, Volume 1489 of Lecture Notes in Artificial Intelligence , pp. 1-16
    • Denecker, M.1
  • 4
    • 22944447065 scopus 로고    scopus 로고
    • Extending classical logic with inductive definitions
    • M. Denecker. Extending classical logic with inductive definitions. In Proc. CL'2000, 2000.
    • (2000) Proc. CL'2000
    • Denecker, M.1
  • 6
    • 0012135910 scopus 로고    scopus 로고
    • Approximating operators, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning
    • J. Minker, editor Kluwer Academic Publishers, Boston/Dordrecht/London
    • M. Denecker, V. Marek, and M. Truszczynski. Approximating operators, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning. In J. Minker, editor, Logic-Based AI, pages 127-144. Kluwer Academic Publishers, Boston/Dordrecht/London, 2000.
    • (2000) Logic-Based AI , pp. 127-144
    • Denecker, M.1    Marek, V.2    Truszczynski, M.3
  • 8
    • 0039401603 scopus 로고    scopus 로고
    • Fixpoint semantics for logic programming - A survey
    • To appear.
    • M. Fitting. Fixpoint semantics for logic programming - a survey. Theoretical Computer Science, 2003. To appear.
    • (2003) Theoretical Computer Science
    • Fitting, M.1
  • 9
    • 77951505493 scopus 로고
    • Classical negation in logic programs and disjunctive databases
    • M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9:365-385, 1991.
    • (1991) New Generation Computing , vol.9 , pp. 365-385
    • Gelfond, M.1    Lifschitz, V.2
  • 12
    • 0029359275 scopus 로고
    • The expressive powers of the logic programming semantics
    • J. Schlipf. The expressive powers of the logic programming semantics. Journal of Computer and System Sciences, 51:64-86, 1995.
    • (1995) Journal of Computer and System Sciences , vol.51 , pp. 64-86
    • Schlipf, J.1
  • 13
    • 84972541021 scopus 로고
    • A lattice-theoretical fixpoint theorem and its applications
    • A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math., 5:285-309, 1955.
    • (1955) Pacific J. Math. , vol.5 , pp. 285-309
    • Tarski, A.1
  • 14
    • 0348066009 scopus 로고
    • An alternating fixpoint of logic programs with negation
    • A. Van Gelder. An alternating fixpoint of logic programs with negation. Journal of computer and system sciences, 47:185-221, 1993.
    • (1993) Journal of Computer and System Sciences , vol.47 , pp. 185-221
    • Van Gelder, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.