-
1
-
-
0001284266
-
A polynomial time algorithm that learns two hidden unit nets
-
E. Baum. A polynomial time algorithm that learns two hidden unit nets, Neural Computation 2:510-522, 1991.
-
(1991)
Neural Computation
, vol.2
, pp. 510-522
-
-
Baum, E.1
-
2
-
-
0024700466
-
A Tree-based statistical language model for natural language speech recognition
-
L. Bahl, P. Brown, P. deSouze, and R. Mercer. A Tree-based statistical language model for natural language speech recognition. IEEE Transactions on Acoustics, Speec, and Signal Processing, 37:1001-1008, 1989.
-
(1989)
IEEE Transactions on Acoustics, Speec, and Signal Processing
, vol.37
, pp. 1001-1008
-
-
Bahl, L.1
Brown, P.2
Desouze, P.3
Mercer, R.4
-
3
-
-
0032047249
-
Specification and simulation of statistical query algorithms for efficiency and noise tolerance
-
J. Aslam and S. Decatur. Specification and simulation of statistical query algorithms for efficiency and noise tolerance. Journal of Computer and System Sciences, 56:191-208, 1998.
-
(1998)
Journal of Computer and System Sciences
, vol.56
, pp. 191-208
-
-
Aslam, J.1
Decatur, S.2
-
4
-
-
0001926474
-
A polynomial time algorithm for learning noisy linear threshold functions
-
A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning noisy linear threshold functions. Algorithmica, 22(1/2):35-52, 1997.
-
(1997)
Algorithmica
, vol.22
, Issue.1-2
, pp. 35-52
-
-
Blum, A.1
Frieze, A.2
Kannan, R.3
Vempala, S.4
-
8
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 28:337-374, 2000.
-
(2000)
The Annals of Statistics
, vol.28
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
11
-
-
0032202014
-
Efficient noise-tolerant learning from statistical queries
-
M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 45(6):983-1006, 1998.
-
(1998)
Journal of the ACM
, vol.45
, Issue.6
, pp. 983-1006
-
-
Kearns, M.1
-
12
-
-
0033075132
-
On the boosting ability of top-down decision tree learning algorithms
-
M. Kearns and Y. Mansour. On the boosting ability of top-down decision tree learning algorithms. Journal of Computer and System Sciences, 58(1):109-128, 1999.
-
(1999)
Journal of Computer and System Sciences
, vol.58
, Issue.1
, pp. 109-128
-
-
Kearns, M.1
Mansour, Y.2
-
13
-
-
0028460231
-
Efficient distribution-free learning of probabilistic concepts
-
M. Kearns and R. Schapire. Efficient distribution-free learning of probabilistic concepts. Journal of Computer and Systems Sciences, 48:464-497, 1994.
-
(1994)
Journal of Computer and Systems Sciences
, vol.48
, pp. 464-497
-
-
Kearns, M.1
Schapire, R.2
-
14
-
-
0003763626
-
-
Ph.D. dissertation, Comput. Sci. Depart., Stanford Univ., Stanford, CA
-
R. Kohavi. Wrappers for Performance Enhancement and Oblivious Decision Graphs. Ph.D. dissertation, Comput. Sci. Depart., Stanford Univ., Stanford, CA, 1995.
-
(1995)
Wrappers for Performance Enhancement and Oblivious Decision Graphs
-
-
Kohavi, R.1
-
20
-
-
0025448521
-
The strength of weak learnability
-
R. Schapire. The strength of weak learnability. Machine Learning, 5(2): 197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.1
-
21
-
-
0027444652
-
A predictive model for aggressive non-Hodgkin's lymphoma
-
The International Non-Hodgkin's Lymphoma Prognostic Factors Project
-
M. Shipp, D. Harrington, J. Anderson, J. Armitage, G. Bonadonna, G. Brittinger, et al. A predictive model for aggressive non-Hodgkin's lymphoma. The International Non-Hodgkin's Lymphoma Prognostic Factors Project. New England Journal of Medicine 329(14):987-94, 1993.
-
(1993)
New England Journal of Medicine
, vol.329
, Issue.14
, pp. 987-994
-
-
Shipp, M.1
Harrington, D.2
Anderson, J.3
Armitage, J.4
Bonadonna, G.5
Brittinger, G.6
-
22
-
-
0021518106
-
A theory of the learnable
-
L. Valiant. A theory of the learnable. Communications of the ACM, 27(11): 1134-1142, 1984.
-
(1984)
Communications of the ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.1
|