메뉴 건너뛰기




Volumn 3055, Issue , 2004, Pages 84-97

Discovering representative models in large time series databases

Author keywords

Frequent Pattern Discovery.; Time Series

Indexed keywords

COMPUTATIONAL COMPLEXITY; DATA MINING; DIAGNOSIS; ELECTROCARDIOGRAPHY; ELECTROENCEPHALOGRAPHY; KNOWLEDGE REPRESENTATION; MATHEMATICAL MODELS; MEDICAL APPLICATIONS; PATTERN RECOGNITION; PRINCIPAL COMPONENT ANALYSIS; TIME SERIES ANALYSIS;

EID: 9444244530     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-25957-2_8     Document Type: Conference Paper
Times cited : (26)

References (21)
  • 6
    • 0015531930 scopus 로고
    • Some approaches to best-match file searching
    • W.A. Burkhard and R.M. Keller. Some approaches to best-match file searching. Communications of the ACM, 16(4):230-236, 1973.
    • (1973) Communications of the ACM , vol.16 , Issue.4 , pp. 230-236
    • Burkhard, W.A.1    Keller, R.M.2
  • 12
    • 0021615874 scopus 로고
    • R-trees a dynamic index structure for spatial searching
    • Boston, Massachusetts
    • A. Guttman. R-trees: a dynamic index structure for spatial searching. In ACM SIGMOD, pages 47-57, Boston, Massachusetts, 1984.
    • (1984) ACM SIGMOD , pp. 47-57
    • Guttman, A.1
  • 16
    • 85150810448 scopus 로고    scopus 로고
    • An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback
    • New York City, NY, ACM Press
    • E.J. Keogh and M. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In Proc. of 4th International Conference on Knowledge Discovery and Data Mining, pages 239-241, New York City, NY, 1998. ACM Press.
    • (1998) Proc. of 4th International Conference on Knowledge Discovery and Data Mining , pp. 239-241
    • Keogh, E.J.1    Pazzani, M.2
  • 19
    • 8344279630 scopus 로고    scopus 로고
    • Discover motifs in multi-dimensional time-series using the principal component analysis and the mdl principle
    • Leipzig, Germany. Lecture Notes in Computer Science, Springer Verlag
    • Y. Tanaka and K. Uehara. Discover motifs in multi-dimensional time-series using the principal component analysis and the mdl principle. In Prooc. of the Third International Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM 2003), pages 252-265, Leipzig, Germany, 2003. Lecture Notes in Computer Science, Springer Verlag.
    • (2003) Prooc. of the Third International Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM 2003) , pp. 252-265
    • Tanaka, Y.1    Uehara, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.