메뉴 건너뛰기




Volumn , Issue , 2004, Pages 342-347

Fibring neural networks

Author keywords

Fibring Systems; Neural Symbolic Integration; Recursion

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; CODES (SYMBOLS); COMPUTER ARCHITECTURE; FORMAL LOGIC; KNOWLEDGE BASED SYSTEMS; LEARNING SYSTEMS;

EID: 9444241498     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (27)

References (30)
  • 1
    • 9444277620 scopus 로고    scopus 로고
    • Machine learning metabolic pathway descriptions using a probabilistic relational representation
    • MI-19
    • Angelopoulos, N., and Muggleton, S. H. 2002. Machine learning metabolic pathway descriptions using a probabilistic relational representation. Electronic Transactions in Artificial Intelligence 6. MI-19.
    • (2002) Electronic Transactions in Artificial Intelligence , vol.6
    • Angelopoulos, N.1    Muggleton, S.H.2
  • 4
    • 0024861871 scopus 로고
    • Approximation by superposition of sigmoidal functions
    • Cybenco, G. 1989. Approximation by superposition of sigmoidal functions. In Mathematics of Control, Signals and Systems 2. 303-314.
    • (1989) Mathematics of Control, Signals and Systems , vol.2 , pp. 303-314
    • Cybenco, G.1
  • 5
    • 84898929591 scopus 로고    scopus 로고
    • Reasoning about time and knowledge in neural-symbolic learning systems
    • Thrun, S.; Saul, L.; and Schoelkopf, B., eds., Proceedings of the NIPS 2003 Conference. Vancouver, Canada: MIT Press
    • d'Avila Garcez, A. S., and Lamb, L. C. 2004. Reasoning about time and knowledge in neural-symbolic learning systems. In Thrun, S.; Saul, L.; and Schoelkopf, B., eds., Advances in Neural Information Processing Systems 16, Proceedings of the NIPS 2003 Conference. Vancouver, Canada: MIT Press.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • D'Avila Garcez, A.S.1    Lamb, L.C.2
  • 6
    • 0035127989 scopus 로고    scopus 로고
    • Symbolic knowledge extraction from trained neural networks: A sound approach
    • d'Avila Garcez, A. S.; Broda, K.; and Gabbay, D. M. 2001. Symbolic knowledge extraction from trained neural networks: A sound approach. Artificial Intelligence 125:155-207.
    • (2001) Artificial Intelligence , vol.125 , pp. 155-207
    • D'Avila Garcez, A.S.1    Broda, K.2    Gabbay, D.M.3
  • 8
    • 9444238985 scopus 로고    scopus 로고
    • On Gabbay's fibring methodology for bayesian and neural networks
    • European Science Foundation (ESF). King's College London
    • d'Avila Garcez, A. S. 2004. On Gabbay's fibring methodology for bayesian and neural networks. In Laws and Models in Science, European Science Foundation (ESF). King's College London.
    • (2004) Laws and Models in Science
    • D'Avila Garcez, A.S.1
  • 9
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J. L. 1990. Finding structure in time. Cognitive Science 14(2):179-211.
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 15
    • 85029662020 scopus 로고
    • CHCL: A connectionist inference system
    • Fronhofer, B., and Wrightson, G., eds., Springer
    • Holldobler, S., and Kurfess, F. 1992. CHCL: A connectionist inference system. In Fronhofer, B., and Wrightson, G., eds., Parallelization in Inference Systems, 318-342. Springer.
    • (1992) Parallelization in Inference Systems , pp. 318-342
    • Holldobler, S.1    Kurfess, F.2
  • 17
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K.; Stinchcombe, M.; and White, H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2:359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 18
    • 0035451550 scopus 로고    scopus 로고
    • Approximate match of rules using backpropagation neural networks
    • Kijsirikul, B.; Sinthupinyo, S.; and Chongkasemwongse, K. 2001. Approximate match of rules using backpropagation neural networks. Machine Learning 43(3):273-299.
    • (2001) Machine Learning , vol.43 , Issue.3 , pp. 273-299
    • Kijsirikul, B.1    Sinthupinyo, S.2    Chongkasemwongse, K.3
  • 19
    • 0029368629 scopus 로고
    • Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge
    • Pinkas, G. 1995. Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. Artificial Intelligence 77:203-247.
    • (1995) Artificial Intelligence , vol.77 , pp. 203-247
    • Pinkas, G.1
  • 20
    • 0025519291 scopus 로고
    • Recursive distributed representations
    • Pollack, J. B. 1990. Recursive distributed representations. Artificial Intelligence 46(1):77-105.
    • (1990) Artificial Intelligence , vol.46 , Issue.1 , pp. 77-105
    • Pollack, J.B.1
  • 22
    • 0033164971 scopus 로고    scopus 로고
    • Advances in SHRUTI: A neurally motivated model of relational knowledge representation and rapid inference using temporal synchrony
    • Shastri, L. 1999. Advances in SHRUTI: a neurally motivated model of relational knowledge representation and rapid inference using temporal synchrony. Applied Intelligence Journal, Special Issue on Neural Networks and Structured Knowledge 11:79-108.
    • (1999) Applied Intelligence Journal, Special Issue on Neural Networks and Structured Knowledge , vol.11 , pp. 79-108
    • Shastri, L.1
  • 23
    • 0025516779 scopus 로고
    • Tensor product variable binding and the representation of symbolic structures in connectionist networks
    • Smolensky, P. 1990. Tensor product variable binding and the representation of symbolic structures in connectionist networks. Artificial Intelligence 46:159-216.
    • (1990) Artificial Intelligence , vol.46 , pp. 159-216
    • Smolensky, P.1
  • 24
    • 0033212069 scopus 로고    scopus 로고
    • Grammar-based connectionist approaches to language
    • Smolensky, P. 2000. Grammar-based connectionist approaches to language. Cognitive Science 23:589-613.
    • (2000) Cognitive Science , vol.23 , pp. 589-613
    • Smolensky, P.1
  • 26
    • 0001069351 scopus 로고
    • A distributed connectionist production system
    • Touretzky, D., and Hinton, G. 1988. A distributed connectionist production system. Cognitive Science 12(3):423-466.
    • (1988) Cognitive Science , vol.12 , Issue.3 , pp. 423-466
    • Touretzky, D.1    Hinton, G.2
  • 27
    • 0028529307 scopus 로고
    • Knowledge-based artificial neural networks
    • Towell, G. G., and Shavlik, J. W. 1994. Knowledge-based artificial neural networks. Artificial Intelligence 70(1):119-165.
    • (1994) Artificial Intelligence , vol.70 , Issue.1 , pp. 119-165
    • Towell, G.G.1    Shavlik, J.W.2
  • 28
    • 4243184855 scopus 로고    scopus 로고
    • Three problems in computer science
    • Valiant, L. G. 2003. Three problems in computer science. Journal of the ACM 50(1):96-99.
    • (2003) Journal of the ACM , vol.50 , Issue.1 , pp. 96-99
    • Valiant, L.G.1
  • 29
    • 0025503558 scopus 로고
    • Backpropagation through time: What does it mean and how to do it
    • Werbos, P. J. 1990. Backpropagation through time: what does it mean and how to do it. In Proceedings of the IEEE, volume 78, 1550-1560.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1
  • 30
    • 33751160104 scopus 로고    scopus 로고
    • Recursive causality in bayesian networks and self-fibring networks
    • European Science Foundation (ESF). King's College London
    • Williamson, J., and Gabbay, D. 2004. Recursive causality in bayesian networks and self-fibring networks. In Laws and Models in Science, European Science Foundation (ESF). King's College London.
    • (2004) Laws and Models in Science
    • Williamson, J.1    Gabbay, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.