-
1
-
-
9444277620
-
Machine learning metabolic pathway descriptions using a probabilistic relational representation
-
MI-19
-
Angelopoulos, N., and Muggleton, S. H. 2002. Machine learning metabolic pathway descriptions using a probabilistic relational representation. Electronic Transactions in Artificial Intelligence 6. MI-19.
-
(2002)
Electronic Transactions in Artificial Intelligence
, vol.6
-
-
Angelopoulos, N.1
Muggleton, S.H.2
-
4
-
-
0024861871
-
Approximation by superposition of sigmoidal functions
-
Cybenco, G. 1989. Approximation by superposition of sigmoidal functions. In Mathematics of Control, Signals and Systems 2. 303-314.
-
(1989)
Mathematics of Control, Signals and Systems
, vol.2
, pp. 303-314
-
-
Cybenco, G.1
-
5
-
-
84898929591
-
Reasoning about time and knowledge in neural-symbolic learning systems
-
Thrun, S.; Saul, L.; and Schoelkopf, B., eds., Proceedings of the NIPS 2003 Conference. Vancouver, Canada: MIT Press
-
d'Avila Garcez, A. S., and Lamb, L. C. 2004. Reasoning about time and knowledge in neural-symbolic learning systems. In Thrun, S.; Saul, L.; and Schoelkopf, B., eds., Advances in Neural Information Processing Systems 16, Proceedings of the NIPS 2003 Conference. Vancouver, Canada: MIT Press.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
-
-
D'Avila Garcez, A.S.1
Lamb, L.C.2
-
6
-
-
0035127989
-
Symbolic knowledge extraction from trained neural networks: A sound approach
-
d'Avila Garcez, A. S.; Broda, K.; and Gabbay, D. M. 2001. Symbolic knowledge extraction from trained neural networks: A sound approach. Artificial Intelligence 125:155-207.
-
(2001)
Artificial Intelligence
, vol.125
, pp. 155-207
-
-
D'Avila Garcez, A.S.1
Broda, K.2
Gabbay, D.M.3
-
8
-
-
9444238985
-
On Gabbay's fibring methodology for bayesian and neural networks
-
European Science Foundation (ESF). King's College London
-
d'Avila Garcez, A. S. 2004. On Gabbay's fibring methodology for bayesian and neural networks. In Laws and Models in Science, European Science Foundation (ESF). King's College London.
-
(2004)
Laws and Models in Science
-
-
D'Avila Garcez, A.S.1
-
9
-
-
26444565569
-
Finding structure in time
-
Elman, J. L. 1990. Finding structure in time. Cognitive Science 14(2):179-211.
-
(1990)
Cognitive Science
, vol.14
, Issue.2
, pp. 179-211
-
-
Elman, J.L.1
-
15
-
-
85029662020
-
CHCL: A connectionist inference system
-
Fronhofer, B., and Wrightson, G., eds., Springer
-
Holldobler, S., and Kurfess, F. 1992. CHCL: A connectionist inference system. In Fronhofer, B., and Wrightson, G., eds., Parallelization in Inference Systems, 318-342. Springer.
-
(1992)
Parallelization in Inference Systems
, pp. 318-342
-
-
Holldobler, S.1
Kurfess, F.2
-
16
-
-
0344671619
-
Approximating the semantics of logic programs by recurrent neural networks
-
Holldobler, S.; Kalinke, Y.; and Storr, H. P. 1999. Approximating the semantics of logic programs by recurrent neural networks. Applied Intelligence Journal, Special Issue on Neural Networks and Structured Knowledge 11(1):45-58.
-
(1999)
Applied Intelligence Journal, Special Issue on Neural Networks and Structured Knowledge
, vol.11
, Issue.1
, pp. 45-58
-
-
Holldobler, S.1
Kalinke, Y.2
Storr, H.P.3
-
17
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K.; Stinchcombe, M.; and White, H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2:359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
18
-
-
0035451550
-
Approximate match of rules using backpropagation neural networks
-
Kijsirikul, B.; Sinthupinyo, S.; and Chongkasemwongse, K. 2001. Approximate match of rules using backpropagation neural networks. Machine Learning 43(3):273-299.
-
(2001)
Machine Learning
, vol.43
, Issue.3
, pp. 273-299
-
-
Kijsirikul, B.1
Sinthupinyo, S.2
Chongkasemwongse, K.3
-
19
-
-
0029368629
-
Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge
-
Pinkas, G. 1995. Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. Artificial Intelligence 77:203-247.
-
(1995)
Artificial Intelligence
, vol.77
, pp. 203-247
-
-
Pinkas, G.1
-
20
-
-
0025519291
-
Recursive distributed representations
-
Pollack, J. B. 1990. Recursive distributed representations. Artificial Intelligence 46(1):77-105.
-
(1990)
Artificial Intelligence
, vol.46
, Issue.1
, pp. 77-105
-
-
Pollack, J.B.1
-
21
-
-
0000646059
-
Learning internal representations by error propagation
-
Rumelhart, D. E., and McClelland, J. L., eds., MIT Press
-
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986. Learning internal representations by error propagation. In Rumelhart, D. E., and McClelland, J. L., eds., Parallel Distributed Processing: Explorations in the Microstructure of Cognition, volume 1. MIT Press. 318-362.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
22
-
-
0033164971
-
Advances in SHRUTI: A neurally motivated model of relational knowledge representation and rapid inference using temporal synchrony
-
Shastri, L. 1999. Advances in SHRUTI: a neurally motivated model of relational knowledge representation and rapid inference using temporal synchrony. Applied Intelligence Journal, Special Issue on Neural Networks and Structured Knowledge 11:79-108.
-
(1999)
Applied Intelligence Journal, Special Issue on Neural Networks and Structured Knowledge
, vol.11
, pp. 79-108
-
-
Shastri, L.1
-
23
-
-
0025516779
-
Tensor product variable binding and the representation of symbolic structures in connectionist networks
-
Smolensky, P. 1990. Tensor product variable binding and the representation of symbolic structures in connectionist networks. Artificial Intelligence 46:159-216.
-
(1990)
Artificial Intelligence
, vol.46
, pp. 159-216
-
-
Smolensky, P.1
-
24
-
-
0033212069
-
Grammar-based connectionist approaches to language
-
Smolensky, P. 2000. Grammar-based connectionist approaches to language. Cognitive Science 23:589-613.
-
(2000)
Cognitive Science
, vol.23
, pp. 589-613
-
-
Smolensky, P.1
-
26
-
-
0001069351
-
A distributed connectionist production system
-
Touretzky, D., and Hinton, G. 1988. A distributed connectionist production system. Cognitive Science 12(3):423-466.
-
(1988)
Cognitive Science
, vol.12
, Issue.3
, pp. 423-466
-
-
Touretzky, D.1
Hinton, G.2
-
27
-
-
0028529307
-
Knowledge-based artificial neural networks
-
Towell, G. G., and Shavlik, J. W. 1994. Knowledge-based artificial neural networks. Artificial Intelligence 70(1):119-165.
-
(1994)
Artificial Intelligence
, vol.70
, Issue.1
, pp. 119-165
-
-
Towell, G.G.1
Shavlik, J.W.2
-
28
-
-
4243184855
-
Three problems in computer science
-
Valiant, L. G. 2003. Three problems in computer science. Journal of the ACM 50(1):96-99.
-
(2003)
Journal of the ACM
, vol.50
, Issue.1
, pp. 96-99
-
-
Valiant, L.G.1
-
29
-
-
0025503558
-
Backpropagation through time: What does it mean and how to do it
-
Werbos, P. J. 1990. Backpropagation through time: what does it mean and how to do it. In Proceedings of the IEEE, volume 78, 1550-1560.
-
(1990)
Proceedings of the IEEE
, vol.78
, pp. 1550-1560
-
-
Werbos, P.J.1
-
30
-
-
33751160104
-
Recursive causality in bayesian networks and self-fibring networks
-
European Science Foundation (ESF). King's College London
-
Williamson, J., and Gabbay, D. 2004. Recursive causality in bayesian networks and self-fibring networks. In Laws and Models in Science, European Science Foundation (ESF). King's College London.
-
(2004)
Laws and Models in Science
-
-
Williamson, J.1
Gabbay, D.2
|