메뉴 건너뛰기




Volumn 14, Issue 4, 2004, Pages 931-945

Hierarchical models for tumor xenograft experiments in drug development

Author keywords

Antitumor study; Bayesian hierarchical model; IBF sampler; Informative censoring; Mixed effects models; Restricted parameters; Truncation

Indexed keywords

IRINOTECAN; TEMOZOLOMIDE;

EID: 9244242568     PISSN: 10543406     EISSN: None     Source Type: Journal    
DOI: 10.1081/BIP-200035462     Document Type: Review
Times cited : (13)

References (23)
  • 2
    • 38149143617 scopus 로고
    • Random sampling from a truncated multivariate normal distribution
    • Breslaw, J. A. (1994). Random sampling from a truncated multivariate normal distribution. Appl. Math. Lett. 7:1-6.
    • (1994) Appl. Math. Lett. , vol.7 , pp. 1-6
    • Breslaw, J.A.1
  • 3
    • 4243828610 scopus 로고
    • Informative dropout in longitudinal data analysis
    • Diggle, P. J., Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussions). Appl. Statist. 43:49-93.
    • (1994) Appl. Statist. , vol.43 , pp. 49-93
    • Diggle, P.J.1    Kenward, M.G.2
  • 4
    • 0036374477 scopus 로고    scopus 로고
    • Guidelines for the design and statistical analysis of experiments using laboratory animals
    • Festing, M. F. W., Altman, D. G. (2002). Guidelines for the design and statistical analysis of experiments using laboratory animals. Institute for Lab. Animal Res. J. 43:244-258.
    • (2002) Institute for Lab. Animal Res. J. , vol.43 , pp. 244-258
    • Festing, M.F.W.1    Altman, D.G.2
  • 6
    • 0032967506 scopus 로고    scopus 로고
    • Mixed effects models with censored data with application to HIV RNA levels
    • Hughes, J. P. (1999). Mixed effects models with censored data with application to HIV RNA levels. Biometrics 55:625-629.
    • (1999) Biometrics , vol.55 , pp. 625-629
    • Hughes, J.P.1
  • 7
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for the joint distribution of repeated measures and event times
    • Hogan, J. W., Laird, N. M. (1997). Mixture models for the joint distribution of repeated measures and event times. Statist. Med. 16:239-258.
    • (1997) Statist. Med. , vol.16 , pp. 239-258
    • Hogan, J.W.1    Laird, N.M.2
  • 9
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. J. Am. Statist. Assoc. 90:1112-1121.
    • (1995) J. Am. Statist. Assoc. , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 10
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. J. R. Statist. Soc. Ser. B 44:226-233.
    • (1982) J. R. Statist. Soc. Ser. B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 11
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • Meng, X. L., Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80:267-278.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 12
    • 0001057239 scopus 로고    scopus 로고
    • Fast EM-type implementations for mixed effects models
    • Meng, X. L., van Dyk, D. (1998). Fast EM-type implementations for mixed effects models. J. R. Statist. Soc. Ser. B 60:559-578.
    • (1998) J. R. Statist. Soc. Ser. B , vol.60 , pp. 559-578
    • Meng, X.L.1    Van Dyk, D.2
  • 13
    • 0033475401 scopus 로고    scopus 로고
    • Direct calculation of the information matrix via the EM algorithm
    • Oakes, D. (1999). Direct calculation of the information matrix via the EM algorithm. J. R. Statist. Soc. Ser. B 61:479-482.
    • (1999) J. R. Statist. Soc. Ser. B , vol.61 , pp. 479-482
    • Oakes, D.1
  • 14
    • 0036400673 scopus 로고    scopus 로고
    • Bayesian hierarchical analysis of multi-level ordinal data using WinBUGS
    • Qiu, Z., Song, P., Tan, M. (2002). Bayesian hierarchical analysis of multi-level ordinal data using WinBUGS. J. Biopharmaceut. Statist. 12:121-135.
    • (2002) J. Biopharmaceut. Statist. , vol.12 , pp. 121-135
    • Qiu, Z.1    Song, P.2    Tan, M.3
  • 15
    • 0001153986 scopus 로고
    • Simulation of truncated normal variable
    • Robert, C. P. (1995). Simulation of truncated normal variable. Statist. Comput. 5:121-125.
    • (1995) Statist. Comput. , vol.5 , pp. 121-125
    • Robert, C.P.1
  • 16
    • 0000458272 scopus 로고
    • Using the SIR algorithm to simulate posterior distributions
    • Bernardo, J. M. et al., eds. Oxford: Oxford University Press
    • Rubin, D. B. (1988). Using the SIR algorithm to simulate posterior distributions (with discussion). In: Bernardo, J. M. et al., eds. Bayesian Statist. Vol. 3. Oxford: Oxford University Press, pp. 395-402.
    • (1988) Bayesian Statist. , vol.3 , pp. 395-402
    • Rubin, D.B.1
  • 17
    • 0027092589 scopus 로고
    • Methods for analysis of informatively censored longitudinal data
    • Schluchter, M. D. (1992). Methods for analysis of informatively censored longitudinal data. Statist. Med. 11:1861-1870.
    • (1992) Statist. Med. , vol.11 , pp. 1861-1870
    • Schluchter, M.D.1
  • 18
    • 0003174553 scopus 로고
    • Bayesian statistics without tears: A sampling-resampling perspective
    • Smith, A. F. M., Gelfand, A. E. (1992). Bayesian statistics without tears: a sampling-resampling perspective. Am. Statist. 46:84-88.
    • (1992) Am. Statist. , vol.46 , pp. 84-88
    • Smith, A.F.M.1    Gelfand, A.E.2
  • 19
    • 0036712379 scopus 로고    scopus 로고
    • Small-sample inference for incomplete longitudinal data with truncation and censoring in tumor xenograft models
    • Tan, M., Fang, H. B., Tian, G. L., Houghton, P. J. (2002). Small-sample inference for incomplete longitudinal data with truncation and censoring in tumor xenograft models. Biometrics 58:612-620.
    • (2002) Biometrics , vol.58 , pp. 612-620
    • Tan, M.1    Fang, H.B.2    Tian, G.L.3    Houghton, P.J.4
  • 20
    • 0038726249 scopus 로고    scopus 로고
    • Experimental design and sample size determination for testing synergism in drug combination studies based on uniform measures
    • Tan, M., Fang, H. B., Tian, G. L., Houghton, P. J. (2003a). Experimental design and sample size determination for testing synergism in drug combination studies based on uniform measures. Statist. Med. 22:2091-2100.
    • (2003) Statist. Med. , vol.22 , pp. 2091-2100
    • Tan, M.1    Fang, H.B.2    Tian, G.L.3    Houghton, P.J.4
  • 21
    • 0012546232 scopus 로고    scopus 로고
    • A non-iterative sampling method for computing posteriors in the structure of EM-type algorithms
    • Tan, M., Tian, G. L., Ng, K. W. (2003b). A non-iterative sampling method for computing posteriors in the structure of EM-type algorithms. Statist. Sinica 13:625-639.
    • (2003) Statist. Sinica , vol.13 , pp. 625-639
    • Tan, M.1    Tian, G.L.2    Ng, K.W.3
  • 22
    • 9244242427 scopus 로고    scopus 로고
    • Efficient algorithms for generating truncated multivariate normal distributions
    • in revision
    • Tian, G. L., Fang, H. B., Tan, M. (2004). Efficient algorithms for generating truncated multivariate normal distributions. J. Statist. Plan. Inter. in revision.
    • (2004) J. Statist. Plan. Inter.
    • Tian, G.L.1    Fang, H.B.2    Tan, M.3
  • 23
    • 0032930511 scopus 로고    scopus 로고
    • Use of summary measures to adjust for informative missingness in repeated measures data with random effects
    • Wu, M. C., Follmann, D. A. (1999). Use of summary measures to adjust for informative missingness in repeated measures data with random effects. Biometric 55:75-84.
    • (1999) Biometric , vol.55 , pp. 75-84
    • Wu, M.C.1    Follmann, D.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.