-
1
-
-
0001278202
-
-
H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
-
(1998)
Phys. Rev. B
, vol.58
-
-
Kosaka, H.1
Kawashima, T.2
Tomita, A.3
Notomi, M.4
Tamamura, T.5
Sato, T.6
Kawakami, S.7
-
2
-
-
0034726304
-
-
H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Phys. Rev. Lett. 85, 1863 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 1863
-
-
Eisenberg, H.S.1
Silberberg, Y.2
Morandotti, R.3
Aitchison, J.S.4
-
3
-
-
0037018065
-
-
T. Pertsch, T. Zentgraf, U. Peschel, A. Bräuer, and F. Lederer, Phys. Rev. Lett. 88, 093901 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 093901
-
-
Pertsch, T.1
Zentgraf, T.2
Peschel, U.3
Bräuer, A.4
Lederer, F.5
-
5
-
-
0346846627
-
-
E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C. M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 207401
-
-
Cubukcu, E.1
Aydin, K.2
Ozbay, E.3
Foteinopolou, S.4
Soukoulis, C.M.5
-
6
-
-
0003026102
-
-
and references therein
-
See, e.g., I. M. Besieris, M. Abdel-Rahman, A. Shaarawi, and A. Chatzipetros, Prog. Electron. Res. (PIER) 19, 1 (1998), and references therein.
-
(1998)
Prog. Electron. Res. (PIER)
, vol.19
, pp. 1
-
-
Besieris, I.M.1
Abdel-Rahman, M.2
Shaarawi, A.3
Chatzipetros, A.4
-
8
-
-
0142120659
-
-
P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, Phys. Rev. Lett. 91, 093904 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 093904
-
-
Di Trapani, P.1
Valiulis, G.2
Piskarskas, A.3
Jedrkiewicz, O.4
Trull, J.5
Conti, C.6
Trillo, S.7
-
10
-
-
0038339053
-
-
M. A. Porras, S. Trillo, C. Conti, and P. Di Trapani, Opt. Lett. 28, 1090 (2003).
-
(2003)
Opt. Lett.
, vol.28
, pp. 1090
-
-
Porras, M.A.1
Trillo, S.2
Conti, C.3
Di Trapani, P.4
-
13
-
-
84893996240
-
-
note
-
Neglecting the second-order derivative in Eq. (5) corresponds, for an isotropic medium, to the well-known paraxial approximation, which is valid provided that the transverse beam size of, e.g., a Gaussian beam is much larger than its Rayleigh range. As θ diverges, the paraxial approximation breaks down, and higher-order derivative terms should be included, marking a continuous transition from the parabolic to the hyperbolic (or elliptic) diffractive regimes.
-
-
-
-
14
-
-
84894007963
-
-
note
-
This is due to the fact that in the monochromatic regime the wave equation in isotropic media is always of the elliptic type, and only the inclusion of temporal degree of freedom may lead to a hyperbolic equation supporting X waves.
-
-
-
-
16
-
-
84893998056
-
-
note
-
Most usual X waves, such as those considered in Refs. 9 and 10, actually correspond to a spectral amplitude F(k∥) x exp(-αk∥); we consider here a different spectral shape for better comparing the transition from parabolic to hyperbolic localization for a transverse Gaussian field distribution.
-
-
-
|