-
2
-
-
84918358658
-
On the length of programs for computing finite binary sequences
-
G. J. Chaitin, On the length of programs for computing finite binary sequences, J. Assoc. Comput. Mach., 13 (1966), 547-569.
-
(1966)
J. Assoc. Comput. Mach.
, vol.13
, pp. 547-569
-
-
Chaitin, G.J.1
-
3
-
-
77954563357
-
On the length of programs for computing finite binary sequences: Statistical considerations
-
G. J. Chaitin, On the length of programs for computing finite binary sequences: statistical considerations, J. Assoc. Comput. Mach., 16 (1969), 145-159.
-
(1969)
J. Assoc. Comput. Mach.
, vol.16
, pp. 145-159
-
-
Chaitin, G.J.1
-
4
-
-
0016532771
-
A theory of program size formally identical to information theory
-
G. J. Chaitin, A theory of program size formally identical to information theory, J. Assoc. Comput. Mach., 22 (1975), 329-340.
-
(1975)
J. Assoc. Comput. Mach.
, vol.22
, pp. 329-340
-
-
Chaitin, G.J.1
-
7
-
-
84875563264
-
-
G. J. Chaitin, Foreword to [1]
-
G. J. Chaitin, Foreword to [1].
-
-
-
-
8
-
-
0000189643
-
On the symmetry of algorithmic information
-
Translated from the Russian version
-
P. Gács, On the symmetry of algorithmic information, Soviet Math. Dokl., 15 (1974), 1477-1480. (Translated from the Russian version.)
-
(1974)
Soviet Math. Dokl.
, vol.15
, pp. 1477-1480
-
-
Gács, P.1
-
9
-
-
0006892523
-
On the relation between descriptional complexity and algorithmic probability
-
P. Gács, On the relation between descriptional complexity and algorithmic probability. Theoret. Comput. SCi., 22 (1983), 71-93.
-
(1983)
Theoret. Comput. SCi.
, vol.22
, pp. 71-93
-
-
Gács, P.1
-
10
-
-
8744313993
-
A review of [5]
-
P. Gács, A review of [5], J. Symbolic Logic, 54(2) (1989), 624-627.
-
(1989)
J. Symbolic Logic
, vol.54
, Issue.2
, pp. 624-627
-
-
Gács, P.1
-
11
-
-
84875573521
-
-
Personal communication, April
-
P. Gács, Personal communication, April, 1993.
-
(1993)
-
-
Gács, P.1
-
12
-
-
0001902056
-
Three approaches to the quantitative definition of information
-
Translated from the Russian version
-
A. N. Kolmogorov, Three approaches to the quantitative definition of information, Problems Inform. Transmission, 1(1) (1965), 1-7. (Translated from the Russian version.)
-
(1965)
Problems Inform. Transmission
, vol.1
, Issue.1
, pp. 1-7
-
-
Kolmogorov, A.N.1
-
13
-
-
0000508181
-
On the notion of a random sequence
-
Translated from the Russian version
-
L. A. Levin, On the notion of a random sequence, Soviet Math. Dokl., 14 (1973), 1413-1416. (Translated from the Russian version.)
-
(1973)
Soviet Math. Dokl.
, vol.14
, pp. 1413-1416
-
-
Levin, L.A.1
-
14
-
-
0016078993
-
Laws of information conservation (non-growth) and aspects of the foundation of probability theory
-
Translated from the Russian version
-
L. A. Levin, Laws of information conservation (non-growth) and aspects of the foundation of probability theory, Problems Inform. Transmission, 10(3) (1974), 206-210. (Translated from the Russian version.)
-
(1974)
Problems Inform. Transmission
, vol.10
, Issue.3
, pp. 206-210
-
-
Levin, L.A.1
-
15
-
-
0001041068
-
Various measures of complexity for finite objects (axiomatic description)
-
Translated from the Russian version
-
L. A. Levin, Various measures of complexity for finite objects (axiomatic description), Soviet Math. Dokl., 17 (1976), 522-526. (Translated from the Russian version.)
-
(1976)
Soviet Math. Dokl.
, vol.17
, pp. 522-526
-
-
Levin, L.A.1
-
17
-
-
0014616203
-
A variant of the Kolmogorov concept of complexity
-
D. W. Loveland, A variant of the Kolmogorov concept of complexity. Inform, and Control, 15 (1969), 602-619.
-
(1969)
Inform, and Control
, vol.15
, pp. 602-619
-
-
Loveland, D.W.1
-
18
-
-
8744292069
-
On normal algorithms which compute Boolean functions
-
Translated from the Russian version
-
A. A. Markov, On normal algorithms which compute Boolean functions, Soviet Math. Dokl., 5 (1964), 922-924. (Translated from the Russian version.)
-
(1964)
Soviet Math. Dokl.
, vol.5
, pp. 922-924
-
-
Markov, A.A.1
-
19
-
-
0015902552
-
Process complexity and effective random tests
-
C. P. Schnorr, Process complexity and effective random tests, J. Comput. System Sci., 7 (1973), 376-388.
-
(1973)
J. Comput. System Sci.
, vol.7
, pp. 376-388
-
-
Schnorr, C.P.1
-
20
-
-
0345106453
-
A survey of the theory of random sequences
-
R. E. Butts and J. Hintikka (eds.), Reidel, Dordrecht
-
C. P. Schnorr, A survey of the theory of random sequences. In R. E. Butts and J. Hintikka (eds.), Basic Problems in Methodology and Linguistics, Reidel, Dordrecht, 1977, pp. 193-210.
-
(1977)
Basic Problems in Methodology and Linguistics
, pp. 193-210
-
-
Schnorr, C.P.1
-
21
-
-
0006892671
-
Algorithmic variants of the notion of entropy
-
Translated from the Russian version
-
A. Kh. Shen, Algorithmic variants of the notion of entropy. Soviet Math. Dokl, 29(3) (1984), 569-573. (Translated from the Russian version.)
-
(1984)
Soviet Math. Dokl
, vol.29
, Issue.3
, pp. 569-573
-
-
Shen, A.Kh.1
-
22
-
-
4544279425
-
A formal theory of inductive inference, Part I
-
R. Solomonoff. A formal theory of inductive inference, Part I, Inform. and Control, 7(1964), 1-22.
-
(1964)
Inform. and Control
, vol.7
, pp. 1-22
-
-
Solomonoff, R.1
-
23
-
-
0002370195
-
Complexity and entropy: An introduction to the theory of Kolmogorov complexity
-
O. Watanabe (ed.), Springer-Verlag, New York
-
V. A. Uspensky, Complexity and entropy: an introduction to the theory of Kolmogorov complexity. In O. Watanabe (ed.), Kolmogorov Complexity and Computational Complexity, Springer-Verlag, New York, 1992.
-
(1992)
Kolmogorov Complexity and Computational Complexity
-
-
Uspensky, V.A.1
-
24
-
-
84956237004
-
Can an individual sequence of zeros and ones be random?
-
Translated from the Russian version
-
V. A. Uspensky, A. L. Semenov, and A. Kh. Shen, Can an individual sequence of zeros and ones be random?, Russian Math. Surveys, 45(1) (1990), 121-189. (Translated from the Russian version.)
-
(1990)
Russian Math. Surveys
, vol.45
, Issue.1
, pp. 121-189
-
-
Uspensky, V.A.1
Semenov, A.L.2
Shen, A.Kh.3
-
25
-
-
0344560105
-
Algorithmic entropy (complexity) of finite objects and its application to defining randomness and amount of information
-
V. V. V'yugin. Algorithmic entropy (complexity) of finite objects and its application to defining randomness and amount of information, Semiotika i Informatika, 16 (1981), 14-43. (English translation: Selecta Mathematica formerly Sovietica, 13(4) (1994), 357-389.)
-
(1981)
Semiotika I Informatika
, vol.16
, pp. 14-43
-
-
V'yugin, V.V.1
-
26
-
-
0028063956
-
-
V. V. V'yugin. Algorithmic entropy (complexity) of finite objects and its application to defining randomness and amount of information, Semiotika i Informatika, 16 (1981), 14-43. (English translation: Selecta Mathematica formerly Sovietica, 13(4) (1994), 357-389.)
-
(1994)
Selecta Mathematica Formerly Sovietica
, vol.13
, Issue.4
, pp. 357-389
-
-
-
27
-
-
77951203397
-
The complexity of finite objects and the developments of the concepts of information and randomness by means of the theory of algorithms
-
Translated from the Russian version
-
A. K. Zvonkin and L. A. Levin, The complexity of finite objects and the developments of the concepts of information and randomness by means of the theory of algorithms, Russian Math. Surveys, 25(6) (1970), 83-124. (Translated from the Russian version.)
-
(1970)
Russian Math. Surveys
, vol.25
, Issue.6
, pp. 83-124
-
-
Zvonkin, A.K.1
Levin, L.A.2
|