메뉴 건너뛰기




Volumn 62, Issue 1-4, 2004, Pages 179-196

Wavelet based denoising integrated into multilayered perceptron

Author keywords

Denoising; Gradient descent threshold adaptation; Multilayered perceptron; Time series prediction; Wavelet multiresolution analysis

Indexed keywords

LEARNING SYSTEMS; MATHEMATICAL MODELS; NOISE ABATEMENT; PREDICTIVE CONTROL SYSTEMS; PROBLEM SOLVING; TIME SERIES ANALYSIS;

EID: 8644261466     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2004.02.003     Document Type: Article
Times cited : (25)

References (24)
  • 2
    • 0002378584 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and decomposition strategies for financial forecasting
    • Aussem A. Campbell J. Murtagh F. Wavelet-based feature extraction and decomposition strategies for financial forecasting J. Comput. Intell. Finance 4 2 1998 5-12
    • (1998) J. Comput. Intell. Finance , vol.4 , Issue.2 , pp. 5-12
    • Aussem, A.1    Campbell, J.2    Murtagh, F.3
  • 3
    • 0031513628 scopus 로고    scopus 로고
    • Combining neural network forecasts on wavelet-transformed time series
    • Aussem A. Murtagh F. Combining neural network forecasts on wavelet-transformed time series Connect. Sci. 9 1997 113-121
    • (1997) Connect. Sci. , vol.9 , pp. 113-121
    • Aussem, A.1    Murtagh, F.2
  • 4
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • Bishop C.M. Training with noise is equivalent to Tikhonov regularization Neural Comput. 7 1 1995 108-116
    • (1995) Neural Comput. , vol.7 , Issue.1 , pp. 108-116
    • Bishop, C.M.1
  • 5
    • 0030176172 scopus 로고    scopus 로고
    • A feedforward neural network with function shape autotuning
    • Chen C.-T. Chang W.-D. A feedforward neural network with function shape autotuning Neural Networks 9 1996 627-641
    • (1996) Neural Networks , vol.9 , pp. 627-641
    • Chen, C.-T.1    Chang, W.-D.2
  • 6
    • 0035190688 scopus 로고    scopus 로고
    • Signal estimation and denoising using VC-theory
    • Cherkassky V. Shao X. Signal estimation and denoising using VC-theory Neural Networks 14 2001 37-52
    • (2001) Neural Networks , vol.14 , pp. 37-52
    • Cherkassky, V.1    Shao, X.2
  • 8
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • Donoho D.L. De-noising by soft-thresholding IEEE Trans. Inform. Theory 41 3 1995 613-627
    • (1995) IEEE Trans. Inform. Theory , vol.41 , Issue.3 , pp. 613-627
    • Donoho, D.L.1
  • 9
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • Donoho D.L. Johnstone I.M. Ideal spatial adaptation by wavelet shrinkage Biometrika 81 1994 425-455
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 10
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • Donoho D.L. Johnstone I.M. Adapting to unknown smoothness via wavelet shrinkage J. Am. Stat. Assoc. 90 432 1995 1200-1224
    • (1995) J. Am. Stat. Assoc. , vol.90 , Issue.432 , pp. 1200-1224
    • Donoho, D.L.1    Johnstone, I.M.2
  • 12
    • 8644243355 scopus 로고    scopus 로고
    • Using wavelet analysis and neural networks for time series prediction
    • Ph.D. Thesis, University of Ljubljana, Faculty of Computer and Information Science, Ljubljana
    • U. Lotrič, Using wavelet analysis and neural networks for time series prediction, Ph.D. Thesis, University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, 2000
    • (2000)
    • Lotrič, U.1
  • 15
    • 0000674772 scopus 로고    scopus 로고
    • Wavelet shrinkage using cross-validation
    • Nason G.P. Wavelet shrinkage using cross-validation J. Roy. Stat. Soc. B 58 1996 463-479
    • (1996) J. Roy. Stat. Soc. B , vol.58 , pp. 463-479
    • Nason, G.P.1
  • 16
    • 0346430028 scopus 로고    scopus 로고
    • Wavelet use for noise rejection and signal modelling
    • A. Procházka, J. Uhlíř, P. J. Rayner, N. G. Kingsbury (Eds.), Boston: Birkhäuser
    • Procházka A. Mudrová M. Štorek M. Wavelet use for noise rejection and signal modelling. In: Procházka A. Uhlíř J. Rayner P.J.W. Kingsbury N.G. (Eds.). Signal Analysis and Prediction 1998 215-226 Birkhäuser Boston
    • (1998) Signal Analysis and Prediction , pp. 215-226
    • Procházka, A.1    Mudrová, M.2    Štorek, M.3
  • 19
    • 0026938667 scopus 로고
    • The discrete wavelet transform: Wedding the à trous and Mallat algorithms
    • Shensa M.J. The discrete wavelet transform: Wedding the à trous and Mallat algorithms IEEE Trans. Signal Process. 40 10 1992 2464-2482
    • (1992) IEEE Trans. Signal Process. , vol.40 , Issue.10 , pp. 2464-2482
    • Shensa, M.J.1
  • 21
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • Stein C.M. Estimation of the mean of a multivariate normal distribution Ann. Stat. 9 6 1981 1135-1151
    • (1981) Ann. Stat. , vol.9 , Issue.6 , pp. 1135-1151
    • Stein, C.M.1
  • 22
    • 0002431967 scopus 로고    scopus 로고
    • Financial forecasting with wavelet filters and neural networks
    • Thomason M.R. Financial forecasting with wavelet filters and neural networks J. Comput. Intell. Finance 5 2 1997 27-32
    • (1997) J. Comput. Intell. Finance , vol.5 , Issue.2 , pp. 27-32
    • Thomason, M.R.1
  • 23
    • 0035024581 scopus 로고    scopus 로고
    • Networks with trainable amplitude of activation functions
    • Trentin E. Networks with trainable amplitude of activation functions Neural Networks 14 2001 471-493
    • (2001) Neural Networks , vol.14 , pp. 471-493
    • Trentin, E.1
  • 24
    • 0028996606 scopus 로고
    • Recurrent neural networks and discrete wavelet transform for time series modeling and prediction
    • Proceedings ICASSP-95, Detroit
    • F.-C. Tsui, S. Mingui, C.-C. Li, R.J. Sclabassi, Recurrent neural networks and discrete wavelet transform for time series modeling and prediction, in: Proceedings ICASSP-95, Detroit, 1995, pp. 3359-3362
    • (1995) , pp. 3359-3362
    • Tsui, F.-C.1    Mingui, S.2    Li, C.-C.3    Sclabassi, R.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.