-
1
-
-
0010708291
-
Ordinary Differential Equations, An Introduction to Nonlinear Analysis
-
New York: W. de Gruyter
-
H. Amann Ordinary Differential Equations, An Introduction to Nonlinear Analysis de Gruyter Stud. Math. vol. 13 1990 W. de Gruyter New York
-
(1990)
de Gruyter Stud. Math.
, vol.13
-
-
Amann, H.1
-
3
-
-
0006725573
-
An algorithm based on singular perturbation theory, for ill-conditioned minimization problems
-
P.T. Boggs An algorithm based on singular perturbation theory, for ill-conditioned minimization problems SIAM J. Numer. Anal. 14 1977 830-843
-
(1977)
SIAM J. Numer. Anal.
, vol.14
, pp. 830-843
-
-
Boggs, P.T.1
-
4
-
-
0001018283
-
Differential gradient methods
-
C.A. Botsaris Differential gradient methods J. Math. Anal. Appl. 63 1978 177-198
-
(1978)
J. Math. Anal. Appl.
, vol.63
, pp. 177-198
-
-
Botsaris, C.A.1
-
5
-
-
0000463442
-
Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations
-
A.A. Brown M.C. Bartholomew-Biggs Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations J. Optim. Theory Appl. 62 1989 211-224
-
(1989)
J. Optim. Theory Appl.
, vol.62
, pp. 211-224
-
-
Brown, A.A.1
Bartholomew-Biggs, M.C.2
-
8
-
-
8644241259
-
On the gradient method in a Hilbert space in the case of nonisolated minima
-
A.F. Izmailov A.A. Tret'yakov On the gradient method in a Hilbert space in the case of nonisolated minima Comput. Math. Math. Phys. 39 1999 521-524
-
(1999)
Comput. Math. Math. Phys.
, vol.39
, pp. 521-524
-
-
Izmailov, A.F.1
Tret'yakov, A.A.2
-
9
-
-
0003734131
-
The gradient method for a class of nonlinear operators in Hilbert space and applications to quasilinear differential equations
-
J. Karátson The gradient method for a class of nonlinear operators in Hilbert space and applications to quasilinear differential equations Pure Math. Appl. 6 1995 191-201
-
(1995)
Pure Math. Appl.
, vol.6
, pp. 191-201
-
-
Karátson, J.1
-
10
-
-
8644237728
-
Gradient method for non-injective operators in Hilbert space with application to Neumann problems
-
J. Karátson Gradient method for non-injective operators in Hilbert space with application to Neumann problems Appl. Math. (Warsaw) 26 1999 333-346
-
(1999)
Appl. Math. (Warsaw)
, vol.26
, pp. 333-346
-
-
Karátson, J.1
-
11
-
-
8644235376
-
Gradient method for non-uniformly convex functionals in Hilbert space
-
J. Karátson Gradient method for non-uniformly convex functionals in Hilbert space Pure Math. Appl. 11 2000 309-316
-
(2000)
Pure Math. Appl.
, vol.11
, pp. 309-316
-
-
Karátson, J.1
-
12
-
-
0012057322
-
General theory of relaxation processes for convex functionals
-
J. Ljubič G. Maistrovskii General theory of relaxation processes for convex functionals Uspekhi Mat. Nauk 25 1970 57-112
-
(1970)
Uspekhi Mat. Nauk
, vol.25
, pp. 57-112
-
-
Ljubič, J.1
Maistrovskii, G.2
-
13
-
-
0002008834
-
Recent advances in unconstrained optimization
-
M.J.D. Powell Recent advances in unconstrained optimization Math. Program. 1 1971 26-57
-
(1971)
Math. Program.
, vol.1
, pp. 26-57
-
-
Powell, M.J.D.1
-
15
-
-
8644291095
-
A new arc algorithm for unconstrained optimization
-
I. Zang A new arc algorithm for unconstrained optimization Math. Program. 15 1978 36-52
-
(1978)
Math. Program.
, vol.15
, pp. 36-52
-
-
Zang, I.1
|