-
1
-
-
0037262814
-
An introduction to MCMC for machine learning
-
C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC for machine learning. Machine Learning, 50:5-43, 2003.
-
(2003)
Machine Learning
, vol.50
, pp. 5-43
-
-
Andrieu, C.1
De Freitas, N.2
Doucet, A.3
Jordan, M.I.4
-
5
-
-
0346982426
-
Using EMfor reinforcement learning
-
P. Dayan and G. E. Hinton. Using EMfor reinforcement learning. Neural Computation, 9:271-278, 1997.
-
(1997)
Neural Computation
, vol.9
, pp. 271-278
-
-
Dayan, P.1
Hinton, G.E.2
-
7
-
-
77956889087
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82:711-732, 1995.
-
(1995)
Biometrika
, vol.82
, pp. 711-732
-
-
Green, P.J.1
-
9
-
-
33749264449
-
Fast particle smoothing: If i had a million particles
-
M. Klaas, M. Briers, N. de Freitas, A. Doucet, and S. Maskell. Fast particle smoothing: If i had a million particles. In International Conference on Machine Learning, 2006.
-
(2006)
International Conference on Machine Learning
-
-
Klaas, M.1
Briers, M.2
De Freitas, N.3
Doucet, A.4
Maskell, S.5
-
11
-
-
0007190954
-
Simulation based optimal design
-
P. Müller. Simulation based optimal design. Bayesian Statistics, 6, 1999.
-
(1999)
Bayesian Statistics
, vol.6
-
-
Müller, P.1
-
12
-
-
4944254628
-
Optimal bayesian design by inhomogeneous Markov chain simulation
-
DOI 10.1198/016214504000001123
-
P. Müller, B. Sansó, and M. De Iorio. Optimal Bayesian design by inhomogeneous Markov chain simulation. J. American Stat. Assoc., 99:788-798, 2004. (Pubitemid 39332860)
-
(2004)
Journal of the American Statistical Association
, vol.99
, Issue.467
, pp. 788-798
-
-
Muller, P.1
Sanso, B.2
De Iorio, M.3
-
13
-
-
31844443291
-
Inverted autonomous helicopter flight via reinforcement learning
-
A. Ng, A. Coates,M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and E. Liang. Inverted autonomous helicopter flight via reinforcement learning. In International Symposium on Experimental Robotics, 2004.
-
(2004)
International Symposium on Experimental Robotics
-
-
Ng, A.1
Coates, A.2
Diel, M.3
Ganapathi, V.4
Schulte, J.5
Tse, B.6
Berger, E.7
Liang, E.8
-
16
-
-
33750724397
-
Point-based value iteration for continuous POMDPs
-
M. Porta, N. Vlassis, M. T. J. Spaan, and P. Poupart. Point-based value iteration for continuous POMDPs. Journal of Machine Learning Research, 7:2329-2367, 2006. (Pubitemid 44708007)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2329-2367
-
-
Porta, J.M.1
Vlassis, N.2
Spaan, M.T.J.3
Poupart, P.4
-
18
-
-
84898978676
-
Monte Carlo POMDPs
-
S. Solla, T. Leen, and K.-R. Müller, editors. MIT Press
-
S. Thrun. Monte Carlo POMDPs. In S. Solla, T. Leen, and K.-R. Müller, editors, Neural Information Processing Systems, pages 1064-1070. MIT Press, 2000.
-
(2000)
Neural Information Processing Systems
, pp. 1064-1070
-
-
Thrun, S.1
-
19
-
-
51349153274
-
Probabilistic inference for solving (PO)MDPs
-
M. Toussaint, S. Harmeling, and A. Storkey. Probabilistic inference for solving (PO)MDPs. Technical Report EDI-INF-RR-0934, University of Edinburgh, School of Informatics, 2006.
-
(2006)
Technical Report EDI-INF-RR-0934, University of Edinburgh, School of Informatics
-
-
Toussaint, M.1
Harmeling, S.2
Storkey, A.3
-
20
-
-
33749234798
-
Probabilistic inference for solving discrete and continuous state Markov decision processes
-
M. Toussaint and A. Storkey. Probabilistic inference for solving discrete and continuous state Markov decision processes. In International Conference on Machine Learning, 2006.
-
(2006)
International Conference on Machine Learning
-
-
Toussaint, M.1
Storkey, A.2
|