메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Pose-sensitive embedding by nonlinear NCA regression

Author keywords

[No Author keywords available]

Indexed keywords

ANALYSIS FRAMEWORKS; BODY POSE; COMPLEX PROBLEMS; EMBEDDINGS; LABELINGS; MATCHINGS; NEIGHBORHOOD COMPONENT ANALYSIS; NONLINEAR EMBEDDING; NOVEL METHODS; VIDEO DATABASE;

EID: 85162010297     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (21)

References (39)
  • 2
    • 38749118638 scopus 로고    scopus 로고
    • Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In FOCS, pages 459-468, 2006.
    • (2006) FOCS , pp. 459-468
    • Andoni, A.1    Indyk, P.2
  • 3
    • 70450203723 scopus 로고    scopus 로고
    • Pictorial structures revisited: People detection and articulated pose estimation
    • M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection and articulated pose estimation. In CVPR, 2009.
    • (2009) CVPR
    • Andriluka, M.1    Roth, S.2    Schiele, B.3
  • 4
    • 5044238246 scopus 로고    scopus 로고
    • Boostmap: A method for efficient approximate similarity rankings
    • V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios. Boostmap: A method for efficient approximate similarity rankings. CVPR, 2004.
    • (2004) CVPR
    • Athitsos, V.1    Alon, J.2    Sclaroff, S.3    Kollios, G.4
  • 5
    • 0026586030 scopus 로고
    • Self-organizing neural network that discovers surfaces in random-dot stereograms
    • S. Becker and G. Hinton. Self-organizing neural network that discovers surfaces in random-dot stereograms. Nature, 355(6356):161-163, 1992.
    • (1992) Nature , vol.355 , Issue.6356 , pp. 161-163
    • Becker, S.1    Hinton, G.2
  • 6
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • sep
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In ICCV, sep 2009.
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 8
    • 70450179964 scopus 로고    scopus 로고
    • Learning sign language by watching TV (using weakly aligned subtitles)
    • P. Buehler, A. Zisserman, and M. Everingham. Learning sign language by watching TV (using weakly aligned subtitles). CVPR, 2009.
    • (2009) CVPR
    • Buehler, P.1    Zisserman, A.2    Everingham, M.3
  • 9
    • 34948855444 scopus 로고    scopus 로고
    • Human detection using oriented histograms of flow and appearance
    • N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and appearance. ECCV, 2006.
    • (2006) ECCV
    • Dalal, N.1    Triggs, B.2    Schmid, C.3
  • 10
    • 34948911163 scopus 로고    scopus 로고
    • Transfer learning in sign language
    • A. Farhadi, D. Forsyth, and R. White. Transfer Learning in Sign language. In CVPR, 2007.
    • (2007) CVPR
    • Farhadi, A.1    Forsyth, D.2    White, R.3
  • 11
    • 51949101231 scopus 로고    scopus 로고
    • A discriminatively trained, multiscale, deformable part model
    • P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, 2008.
    • (2008) CVPR
    • Felzenszwalb, P.1    McAllester, D.2    Ramanan, D.3
  • 12
  • 15
    • 0344982832 scopus 로고    scopus 로고
    • Inferring 3d structure with a statistical image-based shape model
    • K. Grauman, G. Shakhnarovich, and T. Darrell. Inferring 3d structure with a statistical image-based shape model. In ICCV, pages 641-648, 2003.
    • (2003) ICCV , pp. 641-648
    • Grauman, K.1    Shakhnarovich, G.2    Darrell, T.3
  • 16
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In CVPR, pages 1735-1742, 2006.
    • (2006) CVPR , pp. 1735-1742
    • Hadsell, R.1    Chopra, S.2    Lecun, Y.3
  • 17
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 18
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • K. Jarrett, K. Kavukcuoglu, M-A Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In ICCV, 2009.
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.-A.3    Lecun, Y.4
  • 20
    • 33749263205 scopus 로고    scopus 로고
    • Automatic basis function construction for approximate dynamic programming and reinforcement learning
    • P. Keller, S. Mannor, and D. Precup. Automatic basis function construction for approximate dynamic programming and reinforcement learning. In ICML, pages 449-456, 2006.
    • (2006) ICML , pp. 449-456
    • Keller, P.1    Mannor, S.2    Precup, D.3
  • 21
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86(11):2278-2324, 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 22
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, pages 609-616, 2009.
    • (2009) ICML , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 23
    • 34948828582 scopus 로고    scopus 로고
    • Unsupervised learning of image transformations
    • R. Memisevic and G. Hinton. Unsupervised learning of image transformations. In CVPR, 2007.
    • (2007) CVPR
    • Memisevic, R.1    Hinton, G.2
  • 24
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • H. Mobahi, R. Collobert, and J. Weston. Deep learning from temporal coherence in video. In ICML, pages 737-744, 2009.
    • (2009) ICML , pp. 737-744
    • Mobahi, H.1    Collobert, R.2    Weston, J.3
  • 25
    • 0042376057 scopus 로고    scopus 로고
    • Estimating human body configurations using shape context matching
    • G. Mori and J. Malik. Estimating human body configurations using shape context matching. ECCV, 2002.
    • (2002) ECCV
    • Mori, G.1    Malik, J.2
  • 27
    • 70450159350 scopus 로고    scopus 로고
    • Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning
    • M. Norouzi, M. Ranjbar, and G. Mori. Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning. In CVPR, 2009.
    • (2009) CVPR
    • Norouzi, M.1    Ranjbar, M.2    Mori, G.3
  • 28
    • 0010885544 scopus 로고
    • A convolutional neural network hand tracker
    • S.J. Nowlan and J.C. Platt. A convolutional neural network hand tracker. In NIPS, 1995.
    • (1995) NIPS
    • Nowlan, S.J.1    Platt, J.C.2
  • 29
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3):145-175, 2001.
    • (2001) International Journal of Computer Vision , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 30
    • 38949193299 scopus 로고    scopus 로고
    • Why is real-world visual object recognition hard?
    • N. Pinto, D. Cox, and J. DiCarlo. Why is real-world visual object recognition hard? PLoS Comput Biol, 4(1), 2008.
    • (2008) PLoS Comput Biol , vol.4 , Issue.1
    • Pinto, N.1    Cox, D.2    Dicarlo, J.3
  • 31
    • 73449129720 scopus 로고    scopus 로고
    • A high-throughput screening approach to discovering good forms of biologically inspired visual representation
    • N. Pinto, D. Doukhan, J. DiCarlo, and David D. Cox. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput Biol, 5(11), 11 2009.
    • (2009) PLoS Comput Biol , vol.5 , Issue.11 , pp. 11
    • Pinto, N.1    Doukhan, D.2    Dicarlo, J.3    Cox, D.D.4
  • 32
    • 34548203757 scopus 로고    scopus 로고
    • Vision-based human motion analysis: An overview
    • R. Poppe. Vision-based human motion analysis: An overview. Computer Vision and Image Understanding, 108(1-2):4-18, 2007.
    • (2007) Computer Vision and Image Understanding , vol.108 , Issue.1-2 , pp. 4-18
    • Poppe, R.1
  • 33
    • 24644504137 scopus 로고    scopus 로고
    • Strike a pose: Tracking people by finding stylized poses
    • D. Ramanan, D. Forsyth, and A. Zisserman. Strike a pose: Tracking people by finding stylized poses. In CVPR, 2005.
    • (2005) CVPR
    • Ramanan, D.1    Forsyth, D.2    Zisserman, A.3
  • 34
    • 70049096835 scopus 로고    scopus 로고
    • Learning a nonlinear embedding by preserving class neighbourhood structure
    • R. Salakhutdinov and G. Hinton. Learning a nonlinear embedding by preserving class neighbourhood structure. In AISTATS, volume 11, 2007.
    • (2007) AISTATS , vol.11
    • Salakhutdinov, R.1    Hinton, G.2
  • 35
    • 77956000513 scopus 로고    scopus 로고
    • Adaptive pose priors for pictorial structures
    • B. Sapp, C. Jordan, and B.Taskar. Adaptive pose priors for pictorial structures. In CVPR, 2010.
    • (2010) CVPR
    • Sapp, B.1    Jordan, C.2    Taskar, B.3
  • 36
    • 0345414554 scopus 로고    scopus 로고
    • Fast pose estimation with parameter-sensitive hashing
    • G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter-sensitive hashing. In ICCV, pages 750-759, 2003.
    • (2003) ICCV , pp. 750-759
    • Shakhnarovich, G.1    Viola, P.2    Darrell, T.3
  • 37
    • 75149150235 scopus 로고    scopus 로고
    • HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion
    • L. Sigal, A. Balan, and Black. M. J. HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. IJCV, 87(1/2):4-27, 2010.
    • (2010) IJCV , vol.87 , Issue.1-2 , pp. 4-27
    • Sigal, L.1    Balan, A.2    Black, M.J.3
  • 38
    • 51949119257 scopus 로고    scopus 로고
    • Small codes and large image databases for recognition
    • A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases for recognition. In CVPR, 2008.
    • (2008) CVPR
    • Torralba, A.1    Fergus, R.2    Weiss, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.