-
1
-
-
67049100147
-
On-line lda: Adaptive topic models for mining text streams with applications to topic detection and tracking
-
ISSN 1550-4786
-
Loulwah Alsumait, Daniel Barbara, and Carlotta Domeniconi. On-line lda: Adaptive topic models for mining text streams with applications to topic detection and tracking. IEEE International Conference on Data Mining, 0:3-12, 2008. ISSN 1550-4786.
-
(2008)
IEEE International Conference on Data Mining
, pp. 3-12
-
-
Alsumait, L.1
Barbara, D.2
Domeniconi, C.3
-
3
-
-
70449126967
-
Topic models over text streams: A study of batch and online unsupervised learning
-
Arindam Banerjee and Sugato Basu. Topic models over text streams: A study of batch and online unsupervised learning. In SIAM International Conference on Data Mining, 2007.
-
(2007)
SIAM International Conference on Data Mining
-
-
Banerjee, A.1
Basu, S.2
-
9
-
-
0141596527
-
Estimating a dirichlet distribution
-
Thomas P. Minka. Estimating a dirichlet distribution. Technical report, Microsoft, 2000. URL http://research.microsoft.com/-minka/papers/dirichlet/ minka-dirichlet.pdf.
-
(2000)
Technical Report, Microsoft
-
-
Minka, T.P.1
-
10
-
-
0003931083
-
Using lower bounds to approximate integrals
-
Thomas P. Minka. Using lower bounds to approximate integrals. Technical report, Microsoft, 2001. URL http://research.microsoft.com/en-us/um/people/ minka/papers/rem.html.
-
(2001)
Technical Report, Microsoft
-
-
Minka, T.P.1
-
11
-
-
0002788893
-
A view of the em algorithm that justifies incremental, sparse, and other variants
-
M. I. Jordan, editor, Kluwer
-
R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical Models. Kluwer, 1998. URL http://citeseerx.ist.psu.edu/viewdoc/ summary?doi=10.1.1.33.2557.
-
(1998)
Learning in Graphical Models
-
-
Neal, R.1
Hinton, G.2
-
12
-
-
0034131785
-
On-line em algorithm for the normalized gaussian network
-
Masa A. Sato and Shin Ishii. On-line em algorithm for the normalized gaussian network. Neural Computation, 12(2):407-432, 2000. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.3704.
-
(2000)
Neural Computation
, vol.12
, Issue.2
, pp. 407-432
-
-
Sato, M.A.1
Ishii, S.2
-
14
-
-
79952129745
-
Rethinking lda: Why priors matter
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
-
Hanna Wallach, David Mimno, and Andrew McCallum. Rethinking lda: Why priors matter. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1973-1981. 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 1973-1981
-
-
Wallach, H.1
Mimno, D.2
McCallum, A.3
-
15
-
-
70350681184
-
Efficient methods for topic model inference on streaming document collections
-
New York, NY, USA, ACM. ISBN 978-1-60558-495-9
-
Limin Yao, David Mimno, and Andrew McCallum. Efficient methods for topic model inference on streaming document collections. In KDD '09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 937-946, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-495-9.
-
(2009)
KDD '09: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 937-946
-
-
Yao, L.1
Mimno, D.2
McCallum, A.3
|