메뉴 건너뛰기




Volumn , Issue , 1995, Pages 194-202

Supervised and Unsupervised Discretization of Continuous Features

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFIERS; ENTROPY; LEARNING ALGORITHMS; SUPERVISED LEARNING; VOLUME MEASUREMENT;

EID: 85139983802     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1505)

References (31)
  • 2
    • 37749034335 scopus 로고
    • On changing continuous attributes into ordered discrete attributes
    • in Y. Kodratoff, ed., Berlin, Germany: Springer Verlag
    • Catlett, J. (1991b), On changing continuous attributes into ordered discrete attributes, in Y. Kodratoff, ed., "Proceedings of the European Working Session on Learning", Berlin, Germany: Springer- Verlag, pp. 164-178.
    • (1991) Proceedings of the European Working Session on Learning , pp. 164-178
    • Catlett, J.1
  • 8
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R. C. (1993), "Very simple classification rules perform well on most commonly used datasets", Machine Learning 11, 63-90.
    • (1993) Machine Learning , vol.11 , pp. 63-90
    • Holte, R. C.1
  • 10
    • 85099325734 scopus 로고
    • Irrelevant features and the subset selection problem
    • Morgan Kaufmann, Available by anonymous
    • John, G., Kohavi, R. & Pfleger, K. (1994), Irrelevant features and the subset selection problem, in 'Machine Learning: Proceedings of the Eleventh International Conference", Morgan Kaufmann, pp. 121-129. Available by anonymous ftp from: starry.Stanford.EDU:pub/ronnyk/ml94.ps.
    • (1994) Machine Learning: Proceedings of the Eleventh International Conference , pp. 121-129
    • John, G.1    Kohavi, R.2    Pfleger, K.3
  • 12
    • 0028565943 scopus 로고
    • Bottom-up induction of oblivious, read-once decision graphs : strengths and limitations
    • Available by anonymous
    • Kohavi, R. (1994), Bottom-up induction of oblivious, read-once decision graphs : strengths and limitations, in "Twelfth National Conference on Artificial Intelligence", pp. 613-618. Available by anonymous ftp fromStarry.Stanford.EDU:pub/ronnyk/aaai94.ps.
    • (1994) Twelfth National Conference on Artificial Intelligence , pp. 613-618
    • Kohavi, R.1
  • 13
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Available by anonymous ftp from starry.Stanford.EDU:pub/ronnyk/accEst.ps
    • Kohavi, R. (1995), A study of cross-validation and bootstrap for accuracy estimation and model selection, in "Proceedings of the 14th International Joint Conference on Artificial Intelligence". Available by anonymous ftp from starry.Stanford.EDU:pub/ronnyk/accEst.ps.
    • (1995) Proceedings of the 14th International Joint Conference on Artificial Intelligence
    • Kohavi, R.1
  • 14
    • 0001934889 scopus 로고
    • MLC++: A machine learning library in C++
    • IEEE Computer Society Press, Available by anonymous ftp from: starry.Stanford.EDU:pub/ronnyk/mlc toolsmlc.ps
    • Kohavi, R., John, G., Long, R., Manley, D. & Pfleger, K. (1994), MLC++: A machine learning library in C++, in "Tools with Artificial Intelligence", IEEE Computer Society Press, pp. 740-743. Available by anonymous ftp from: starry.Stanford.EDU:pub/ronnyk/mlc/ toolsmlc.ps.
    • (1994) Tools with Artificial Intelligence , pp. 740-743
    • Kohavi, R.1    John, G.2    Long, R.3    Manley, D.4    Pfleger, K.5
  • 19
    • 0003046842 scopus 로고
    • Learning from observations: Conceptual clustering
    • inT. M. M. R. S. Michalski, J. G. Carbonell, ed., Tioga, Palo Alto
    • Michalski, R. S. & Stepp, R. E. (1983), Learning from observations: Conceptual clustering, inT. M. M. R. S. Michalski, J. G. Carbonell, ed., "Machine Learning: An Artificial Intelligence Approach*. Tioga, Palo Alto.
    • (1983) Machine Learning: An Artificial Intelligence Approach*
    • Michalski, R. S.1    Stepp, R. E.2
  • 21
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • Pagallo, G. & Haussler, D. (1990), "Boolean feature discovery in empirical learning", Machine Learning 5, 71-99.
    • (1990) Machine Learning , vol.5 , pp. 71-99
    • Pagallo, G.1    Haussler, D.2
  • 25
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • Rissanen, J. (1986), "Stochastic complexity and modeling\ Ann. Statist 14, 1080-1100.
    • (1986) Ann. Statist , vol.14 , pp. 1080-1100
    • Rissanen, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.