메뉴 건너뛰기




Volumn 2013-January, Issue , 2013, Pages

Combining wearable accelerometer and physiological data for activity and energy expenditure estimation

Author keywords

[No Author keywords available]

Indexed keywords

BIOMEDICAL SIGNAL PROCESSING; ELECTROPHYSIOLOGY; PATTERN RECOGNITION; PHYSIOLOGICAL MODELS; REGRESSION ANALYSIS; WALKING AIDS; WEARABLE SENSORS;

EID: 85139432376     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2534088.2534106     Document Type: Conference Paper
Times cited : (18)

References (22)
  • 1
    • 78650027970 scopus 로고    scopus 로고
    • Using wearable activity type detection to improve physical activity energy expenditure estimation
    • F. Albinali, S. S. Intille, W. Haskell, and M. Rosenberger. Using wearable activity type detection to improve physical activity energy expenditure estimation. In UbiComp, pages 311–320, 2010.
    • (2010) UbiComp , pp. 311-320
    • Albinali, F.1    Intille, S.S.2    Haskell, W.3    Rosenberger, M.4
  • 2
    • 84876222948 scopus 로고    scopus 로고
    • Energy expenditure estimation using wearable sensors: A new methodology for activity-specific models
    • M. Altini, J. Penders, and O. Amft. Energy expenditure estimation using wearable sensors: A new methodology for activity-specific models. In Wireless Health’12, 2012.
    • (2012) Wireless Health’12
    • Altini, M.1    Penders, J.2    Amft, O.3
  • 3
    • 85139448330 scopus 로고    scopus 로고
    • Body weight-normalized energy expenditure estimation using combined activity and allometric scaling clustering
    • press
    • M. Altini, J. Penders, and O. Amft. Body weight-normalized energy expenditure estimation using combined activity and allometric scaling clustering. In EMBC’13, in-press.
    • EMBC’13
    • Altini, M.1    Penders, J.2    Amft, O.3
  • 4
    • 85139381304 scopus 로고    scopus 로고
    • Personalizing energy expenditure estimation using a cardiorespiratory fitness predicate
    • press
    • M. Altini, J. Penders, and O. Amft. Personalizing energy expenditure estimation using a cardiorespiratory fitness predicate. In Pervasive Health ’13, in-press.
    • Pervasive Health ’13
    • Altini, M.1    Penders, J.2    Amft, O.3
  • 5
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • R. Battiti. Using mutual information for selecting features in supervised neural net learning. Neural Networks, IEEE Transactions on, 5(4):537–550, 1994.
    • (1994) Neural Networks, IEEE Transactions on , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 6
    • 69749105447 scopus 로고    scopus 로고
    • Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer
    • A. G. Bonomi. Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. Journal of Applied Physiology, 107(3):655–661, 2009.
    • (2009) Journal of Applied Physiology , vol.107 , Issue.3 , pp. 655-661
    • Bonomi, A.G.1
  • 7
    • 84859590080 scopus 로고    scopus 로고
    • Divide and conquer”: Assessing energy expenditure following physical activity type classification
    • Mar
    • A. G. Bonomi and G. Plasqui.”Divide and conquer”: assessing energy expenditure following physical activity type classification. Journal of applied physiology, 112(5):932, Mar. 2012.
    • (2012) Journal of Applied Physiology , vol.112 , Issue.5 , pp. 932
    • Bonomi, A.G.1    Plasqui, G.2
  • 8
    • 0024516754 scopus 로고
    • The use of heart rate monitoring in the estimation of energy expenditure: A validation study using indirect whole-body calorimetry
    • Mar
    • S. M. Ceesay, A. M. Prentice, and K. C. Day. The use of heart rate monitoring in the estimation of energy expenditure: a validation study using indirect whole-body calorimetry. The British journal of nutrition, 61(2):175–186, Mar. 1989.
    • (1989) The British Journal of Nutrition , vol.61 , Issue.2 , pp. 175-186
    • Ceesay, S.M.1    Prentice, A.M.2    Day, K.C.3
  • 9
    • 85139397769 scopus 로고    scopus 로고
    • Unsupervised activity clustering to estimate energy expenditure with a single body sensor
    • press
    • S. Chen, M. Altini, J. Penders, J. Lach, and O. Amft. Unsupervised activity clustering to estimate energy expenditure with a single body sensor. In BSN’13, in-press.
    • BSN’13
    • Chen, S.1    Altini, M.2    Penders, J.3    Lach, J.4    Amft, O.5
  • 11
    • 77951465020 scopus 로고    scopus 로고
    • A refined 2-regression model for the actigraph accelerometer
    • S. E. Crouter and D. R. Bassett. A refined 2-regression model for the actigraph accelerometer. Medicine & Science in Sports & Exercise, 42(5):1029–1037, 2010.
    • (2010) Medicine & Science in Sports & Exercise , vol.42 , Issue.5 , pp. 1029-1037
    • Crouter, S.E.1    Bassett, D.R.2
  • 12
    • 83655203046 scopus 로고    scopus 로고
    • Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: Validation on an independent sample
    • P. Freedson. Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: Validation on an independent sample. Journal of Applied Physiology, 2011.
    • (2011) Journal of Applied Physiology
    • Freedson, P.1
  • 13
    • 0035021150 scopus 로고    scopus 로고
    • Validation of the COSMED K4 b2 portable metabolic system
    • May
    • J. E. McLaughlin. Validation of the COSMED K4 b2 portable metabolic system. International journal of sports medicine, 22(4):280–284, May 2001.
    • (2001) International Journal of Sports Medicine , vol.22 , Issue.4 , pp. 280-284
    • McLaughlin, J.E.1
  • 14
    • 84965084491 scopus 로고
    • Coronary heart disease and physical activity of work
    • J. N. Morris and M. D. Crawford. Coronary heart disease and physical activity of work. British Medical Journal, 2(5111):1485, 1958.
    • (1958) British Medical Journal , vol.2 , Issue.5111 , pp. 1485
    • Morris, J.N.1    Crawford, M.D.2
  • 15
    • 34247383243 scopus 로고    scopus 로고
    • Body movement activity recognition for ambulatory cardiac monitoring
    • T. Pawar. Body movement activity recognition for ambulatory cardiac monitoring. IEEE transactions on biomedical engineering, 54(5):874–882, 2007.
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , Issue.5 , pp. 874-882
    • Pawar, T.1
  • 16
    • 35348971908 scopus 로고    scopus 로고
    • An artificial neural network model of energy expenditure using nonintegrated acceleration signals
    • Oct
    • M. P. Rothney, M. Neumann, A. Beziat, and K. Y. Chen. An artificial neural network model of energy expenditure using nonintegrated acceleration signals. J Appl Physiol, 103(4):1419–1427, Oct. 2007.
    • (2007) J Appl Physiol , vol.103 , Issue.4 , pp. 1419-1427
    • Rothney, M.P.1    Neumann, M.2    Beziat, A.3    Chen, K.Y.4
  • 17
    • 82055198469 scopus 로고    scopus 로고
    • A stepwise validation of a wearable system for estimating energy expenditure in field-based research
    • M. Rumo, O. Amft, G. Tröster, and U. Mäder. A stepwise validation of a wearable system for estimating energy expenditure in field-based research. Physiological measurement, 32(12):1983–2001, 2011.
    • (2011) Physiological Measurement , vol.32 , Issue.12 , pp. 1983-2001
    • Rumo, M.1    Amft, O.2    Tröster, G.3    Mäder, U.4
  • 18
    • 38149133210 scopus 로고    scopus 로고
    • A new heart rate variability-based method for the estimation of oxygen consumption without individual laboratory calibration: Application example on postal workers
    • J. Smolander. A new heart rate variability-based method for the estimation of oxygen consumption without individual laboratory calibration: application example on postal workers. Applied Ergonomics, 39(3):325–331, 2008.
    • (2008) Applied Ergonomics , vol.39 , Issue.3 , pp. 325-331
    • Smolander, J.1
  • 19
    • 79953027715 scopus 로고    scopus 로고
    • A comparison of energy expenditure estimates from the actiheart and actical physical activity monitors during low intensity activities, walking, and jogging
    • D. K. Spierer, M. Hagins, A. Rundle, and E. Pappas. A comparison of energy expenditure estimates from the actiheart and actical physical activity monitors during low intensity activities, walking, and jogging. European journal of applied physiology, 111(4):659–667, 2011.
    • (2011) European Journal of Applied Physiology , vol.111 , Issue.4 , pp. 659-667
    • Spierer, D.K.1    Hagins, M.2    Rundle, A.3    Pappas, E.4
  • 21
    • 67650383820 scopus 로고    scopus 로고
    • Estimating Activity-related Energy Expenditure Under Sedentary Conditions Using a Tri-axial Seismic Accelerometer
    • Mar
    • V. T. van Hees, R. C. van Lummel, and K. R. Westerterp. Estimating Activity-related Energy Expenditure Under Sedentary Conditions Using a Tri-axial Seismic Accelerometer. Obesity, 17(6):1287–1292, Mar. 2009.
    • (2009) Obesity , vol.17 , Issue.6 , pp. 1287-1292
    • van Hees, V.T.1    van Lummel, R.C.2    Westerterp, K.R.3
  • 22
    • 34248345088 scopus 로고    scopus 로고
    • Field validation of the mti actigraph and bodymedia armband monitor using the ideea monitor
    • G. J. Welk, J. J. McClain, J. C. Eisenmann, and E. E. Wickel. Field validation of the mti actigraph and bodymedia armband monitor using the ideea monitor. Obesity, 15(4):918–928, 2007.
    • (2007) Obesity , vol.15 , Issue.4 , pp. 918-928
    • Welk, G.J.1    McClain, J.J.2    Eisenmann, J.C.3    Wickel, E.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.