-
1
-
-
77952420014
-
A Proposed Test of Temporal Nonlocality in Bistable Perception
-
Atmanspacher, Harald, and Thomas Filk. 2010. “ A Proposed Test of Temporal Nonlocality in Bistable Perception.” Journal of Mathematical Psychology 54 (3): 314–321.
-
(2010)
Journal of Mathematical Psychology
, vol.54
, Issue.3
, pp. 314-321
-
-
Atmanspacher, H.1
Filk, T.2
-
2
-
-
84885482538
-
The Necker-Zeno Model for Bistable Perception
-
Atmanspacher, Harald, and Thomas Filk. 2013. “ The Necker-Zeno Model for Bistable Perception.” Topics in Cognitive Science 5 (4): 800–817.
-
(2013)
Topics in Cognitive Science
, vol.5
, Issue.4
, pp. 800-817
-
-
Atmanspacher, H.1
Filk, T.2
-
6
-
-
85085972145
-
Musical Pitch Quantization as an Eigenvalue Problem
-
Beim Graben, Peter, and Maria Mannone. 2020. “ Musical Pitch Quantization as an Eigenvalue Problem.” Journal of Mathematics and Music 14: 329–346.
-
(2020)
Journal of Mathematics and Music
, vol.14
, pp. 329-346
-
-
Beim Graben, P.1
Mannone, M.2
-
7
-
-
84938520513
-
Modelling Tonal Attraction: Tonal Hierarchies, Interval Cycles, and Quantum Probabilities
-
Blutner, Reinhard. 2017. “ Modelling Tonal Attraction: Tonal Hierarchies, Interval Cycles, and Quantum Probabilities.” Soft Computing 21: 1401–1419.
-
(2017)
Soft Computing
, vol.21
, pp. 1401-1419
-
-
Blutner, R.1
-
9
-
-
77952548215
-
Two Qubits for C.G. Jung’s Theory of Personality
-
Blutner, Reinhard, and Elena Hochnadel. 2010. “ Two Qubits for C.G. Jung’s Theory of Personality.” Cognitive Systems Research 11: 243–259.
-
(2010)
Cognitive Systems Research
, vol.11
, pp. 243-259
-
-
Blutner, R.1
Hochnadel, E.2
-
10
-
-
0019643162
-
Circularity in Relative Pitch Judgments for Inharmonic Complex Tones: The Shepard Demonstration Revisited, Again
-
Burns, Edward M. 1981. “ Circularity in Relative Pitch Judgments for Inharmonic Complex Tones: The Shepard Demonstration Revisited, Again.” Perception & Psychophysics 30: 467–472.
-
(1981)
Perception & Psychophysics
, vol.30
, pp. 467-472
-
-
Burns, E.M.1
-
11
-
-
84884426805
-
Dissecting the Brain with Sound
-
Carlson, Shawn. 1996. “ Dissecting the Brain with Sound.” Scientific American 275 (112): 114–115.
-
(1996)
Scientific American
, vol.275
, Issue.112
, pp. 114-115
-
-
Carlson, S.1
-
12
-
-
85160883972
-
-
Quantum Computation: Playing the Quantum Symphony,. Quantum World Association
-
Cervera-Lierta, Alba. 2018. Quantum Computation: Playing the Quantum Symphony. Quantum World Association. https://medium.com/@quantum_wa/quantum-computation-playing-the-quantum-symphony-7492fd4264c4.
-
(2018)
-
-
Cervera-Lierta, A.1
-
13
-
-
84947223651
-
Quantum Information, Cognition, and Music
-
Chiara, Dalla, Maria Luisa, Roberto Giuntini, R. Leporini, Eleonora Negri, and Giuseppe Sergioli. 2015. “ Quantum Information, Cognition, and Music.” Frontiers in Psychology 6: 1583.
-
(2015)
Frontiers in Psychology
, vol.6
, pp. 1583
-
-
Chiara, D.1
Luisa, M.2
Giuntini, R.3
Leporini, R.4
Negri, E.5
Sergioli, G.6
-
14
-
-
77957270873
-
From Quantum Mechanics to Music
-
Chiara, Dalla, Maria Luisa, Roberto Giuntini, and Eleonora Negri. 2008. “ From Quantum Mechanics to Music.” Advanced Science Letters 1: 169–178.
-
(2008)
Advanced Science Letters
, vol.1
, pp. 169-178
-
-
Chiara, D.1
Luisa, M.2
Giuntini, R.3
Negri, E.4
-
15
-
-
84968053424
-
A Musical Paradox
-
Deutsch, Diana. 1986. “ A Musical Paradox.” Music Perception 3: 275–280.
-
(1986)
Music Perception
, vol.3
, pp. 275-280
-
-
Deutsch, D.1
-
16
-
-
84968195224
-
The Semitone Paradox
-
Deutsch, Diana. 1988. “ The Semitone Paradox.” Music Perception 6: 115–131.
-
(1988)
Music Perception
, vol.6
, pp. 115-131
-
-
Deutsch, D.1
-
17
-
-
84968091441
-
Pitch Proximity in the Grouping of Simultaneous Groups
-
Deutsch, Diana. 1991. “ Pitch Proximity in the Grouping of Simultaneous Groups.” Music Perception 9: 185–198.
-
(1991)
Music Perception
, vol.9
, pp. 185-198
-
-
Deutsch, D.1
-
19
-
-
85160884591
-
-
The Psychology of Music,. Elsevier San Diego. Chapter 7, page 301
-
Deutsch, Diana 2012a. The Psychology of Music. Elsevier San Diego. Chapter 7, page 301.
-
(2012)
-
-
Deutsch, D.1
-
21
-
-
85160893872
-
-
Über musikalische Tonbestimmung und Temperatur [On Specifying Musical Tones and Temperature]. In:, Abhandlungen der mathematisch-physischen Classe der Königlich Sächsischen Gesellchaft der Wissenschaften, 4, Leipzig, 1–120
-
Drobish, Moritz Wilhelm. 1852. Über musikalische Tonbestimmung und Temperatur [On Specifying Musical Tones and Temperature]. In: Abhandlungen der mathematisch-physischen Classe der Königlich Sächsischen Gesellchaft der Wissenschaften 4, Leipzig, 1–120.
-
(1852)
-
-
Drobish, M.W.1
-
22
-
-
85160890284
-
-
Enabling Practical-Scale Quantum Computing (EPiQC) Expedition
-
EPiQC. 2019. Enabling Practical-Scale Quantum Computing (EPiQC) Expedition. https://www.epiqc.cs.uchicago.edu/resources-superposition.
-
(2019)
-
-
-
23
-
-
79954477967
-
Waveform Circularity from Added Sawtooth and Square Wave Acoustical Signals
-
Fugiel, Bogusław. 2011. “ Waveform Circularity from Added Sawtooth and Square Wave Acoustical Signals.” Music Perception 28: 415–424.
-
(2011)
Music Perception
, vol.28
, pp. 415-424
-
-
Fugiel, B.1
-
24
-
-
5644237214
-
Acoustical Quanta and the Theory of Hearing
-
Gabor, Dennis. 1947. “ Acoustical Quanta and the Theory of Hearing.” Nature 159: 591–594.
-
(1947)
Nature
, vol.159
, pp. 591-594
-
-
Gabor, D.1
-
25
-
-
34250939531
-
Der Experimentelle Nachweiss der Richtungsquantelung im Magnetfeld
-
Gerlach, Walther, and Otto Stern. 1922. “ Der Experimentelle Nachweiss der Richtungsquantelung im Magnetfeld.” Zeitschrift für Physik 9: 349–355.
-
(1922)
Zeitschrift für Physik
, vol.9
, pp. 349-355
-
-
Gerlach, W.1
Stern, O.2
-
26
-
-
85160879200
-
-
Shepard Tones from the Wolfram Demonstrations Project
-
Gray, Theodore. 2011. Shepard Tones from the Wolfram Demonstrations Project. http://demonstrations.wolfram.com/ShepardTones/.
-
(2011)
-
-
Gray, T.1
-
27
-
-
85160899404
-
-
Mapping Music., Harvard Magazine
-
Gudrais, Elisabeth. 2007. Mapping Music. Harvard Magazine.
-
(2007)
-
-
Gudrais, E.1
-
28
-
-
85160895003
-
Composing with Quantum Information: Aspects of Quantum Music in Theory and Practice
-
Helweg, Kim. 2018. “ Composing with Quantum Information: Aspects of Quantum Music in Theory and Practice.” Muzikologija/Musicology 24: 61–77.
-
(2018)
Muzikologija/Musicology
, vol.24
, pp. 61-77
-
-
Helweg, K.1
-
29
-
-
85048696332
-
Experiencing Quantum Through Music
-
Kirke, Alexis. 2018a. “ Experiencing Quantum Through Music.” ITNOW 60: 54–55.
-
(2018)
ITNOW
, vol.60
, pp. 54-55
-
-
Kirke, A.1
-
30
-
-
85073784063
-
Programming Gate-Based Hardware Quantum Computers for Music
-
Kirke, Alexis. 2018b. “ Programming Gate-Based Hardware Quantum Computers for Music.” Muzikologija/Musicology 24: 21–37.
-
(2018)
Muzikologija/Musicology
, vol.24
, pp. 21-37
-
-
Kirke, A.1
-
31
-
-
85073802182
-
Applying Quantum Hardware to Non-Scientific Problems: Grover’s Algorithm and Rule-Based Algorithmic Music Composition
-
Kirke, Alexis. 2019. “ Applying Quantum Hardware to Non-Scientific Problems: Grover’s Algorithm and Rule-Based Algorithmic Music Composition.” International Journal of Unconventional Computing 14: 349–374.
-
(2019)
International Journal of Unconventional Computing
, vol.14
, pp. 349-374
-
-
Kirke, A.1
-
32
-
-
85073772270
-
Experiments in Sound and Music Quantum Computing
-
Miranda E.R., (ed), Cham: Springer, and,. edited by
-
Kirke, Alexis, and Eduardo Reck Miranda. 2017. “ Experiments in Sound and Music Quantum Computing.” In Guide to Unconventional Computing for Music, edited by E. R. Miranda, 121–157. Cham: Springer.
-
(2017)
Guide to Unconventional Computing for Music
, pp. 121-157
-
-
Kirke, A.1
Miranda, E.R.2
-
33
-
-
84922670021
-
-
New Haven: Yale University Press,. Reprinted, Oxford and New York: Oxford University Press, 2007
-
Lewin, David. 1987. Generalized Musical Intervals and Transformations. New Haven: Yale University Press. Reprinted, Oxford and New York: Oxford University Press, 2007.
-
(1987)
Generalized Musical Intervals and Transformations
-
-
Lewin, D.1
-
34
-
-
0019795282
-
Practically Perfect Pitch
-
–,. See also: Hall, D.E. 1982. Practically Perfect Pitch: Some comments., Journal of the Acoustical Society of America, 71: 754–755
-
Lockhead, Gregory R., and Robert Byrd. 1981. “ Practically Perfect Pitch.” Journal of the Acoustical Society of America 70: 387–389. See also: Hall, D.E. 1982. Practically Perfect Pitch: Some comments. Journal of the Acoustical Society of America 71: 754–755.
-
(1981)
Journal of the Acoustical Society of America
, vol.70
, pp. 387-389
-
-
Lockhead, G.R.1
Byrd, R.2
-
35
-
-
84968124404
-
Absolute Pitch Identification: Effects of Timbre and Pitch Region
-
Miyazaki, Ken’ichi. 1989. “ Absolute Pitch Identification: Effects of Timbre and Pitch Region.” Music Perception 7: 1–14.
-
(1989)
Music Perception
, vol.7
, pp. 1-14
-
-
Miyazaki, K.1
-
36
-
-
85127274272
-
Synthesis and Analysis of Sounds Developed from the Bose-Einstein Condensate: Theory and Experimental Results
-
Novkovic, Dragan, Marko Peljevic, and Mateja Malinovic. 2018. “ Synthesis and Analysis of Sounds Developed from the Bose-Einstein Condensate: Theory and Experimental Results.” Muzikologija/Musicology 24: 95–109.
-
(2018)
Muzikologija/Musicology
, vol.24
, pp. 95-109
-
-
Novkovic, D.1
Peljevic, M.2
Malinovic, M.3
-
37
-
-
0002546307
-
Impossible Objects: A Special Type of Visual Illusion
-
Penrose, Lionel S., and Robert Penrose. 1958. “ Impossible Objects: A Special Type of Visual Illusion.” British Journal of Psychology 49: 31–33.
-
(1958)
British Journal of Psychology
, vol.49
, pp. 31-33
-
-
Penrose, L.S.1
Penrose, R.2
-
38
-
-
84939227167
-
Quantum Music
-
Putz, Volkmar, and Karl Svozil. 2017. “ Quantum Music.” Soft Computing 21: 1467–1471.
-
(2017)
Soft Computing
, vol.21
, pp. 1467-1471
-
-
Putz, V.1
Svozil, K.2
-
39
-
-
79954513533
-
Pitch Control and Pitch Paradoxes Demonstrated with Computer-Synthesized Sounds
-
Risset, Jean-Claude. 1969. “ Pitch Control and Pitch Paradoxes Demonstrated with Computer-Synthesized Sounds.” Journal of the Acoustical Society of America 46 (1A): 88–88.
-
(1969)
Journal of the Acoustical Society of America
, vol.46
, Issue.1A
, pp. 88
-
-
Risset, J.-C.1
-
41
-
-
85077603375
-
Johannes Kepler’s Pursuit of Harmony
-
Rothman, Aviva. 2020. “ Johannes Kepler’s Pursuit of Harmony.” Physics Today 73: 36–42.
-
(2020)
Physics Today
, vol.73
, pp. 36-42
-
-
Rothman, A.1
-
42
-
-
85160899271
-
-
The Harmony of the World: A Realization for the Ear of Johannes Kepler’s Astronomical Data from Harmonices Mundi 1619,. Audio CD
-
Ruff, Willie, and John Rodgers. 2011. The Harmony of the World: A Realization for the Ear of Johannes Kepler’s Astronomical Data from Harmonices Mundi 1619. Audio CD.
-
(2011)
-
-
Ruff, W.1
Rodgers, J.2
-
44
-
-
85160884766
-
-
Nurtured by Love. A New Approach to Education,. Exposition Press New York, p. 90
-
Suzuki, Shinichi. 1969. Nurtured by Love. A New Approach to Education. Exposition Press New York, p. 90.
-
(1969)
-
-
Suzuki, S.1
-
45
-
-
33745917405
-
The Geometry of Musical Chords
-
Tymoczko, Dmitri. 2006. “ The Geometry of Musical Chords.” Science 313: 72–74.
-
(2006)
Science
, vol.313
, pp. 72-74
-
-
Tymoczko, D.1
|