-
2
-
-
0030527063
-
Why John von Neumann did not like the Hilbert space formalism of quantum mechanics (and what he liked instead)
-
M. Rédei, Why John von Neumann did not like the Hilbert space formalism of quantum mechanics (and what he liked instead). Stud. Hist. Philos. Mod. Phys 27, 493–510 (1996).
-
(1996)
Stud. Hist. Philos. Mod. Phys
, vol.27
, pp. 493-510
-
-
Rédei, M.1
-
3
-
-
0037923080
-
-
arXiv [Preprint] (Accessed 10 February 2022)
-
L. Hardy, Quantum theory from five reasonable axioms. arXiv [Preprint] (2001). https://arxiv.org/abs/quant-ph/0101012v4 (Accessed 10 February 2022).
-
(2001)
Quantum theory from five reasonable axioms
-
-
Hardy, L.1
-
4
-
-
84880125549
-
Is quantum mechanics exact?
-
A. Kapustin, Is quantum mechanics exact? J. Math. Phys. 54, 062107 (2013).
-
(2013)
J. Math. Phys
, vol.54
, pp. 062107
-
-
Kapustin, A.1
-
12
-
-
0000596363
-
An elementary theory of the category of sets
-
F. W. Lawvere, An elementary theory of the category of sets. Proc. Natl. Acad. Sci. U.S.A. 52, 1506–1511 (1964).
-
(1964)
Proc. Natl. Acad. Sci. U.S.A
, vol.52
, pp. 1506-1511
-
-
Lawvere, F. W.1
-
14
-
-
0000853072
-
Duality for groups
-
S. Mac Lane, Duality for groups. Bull. Am. Math. Soc. 56, 485–516 (1950).
-
(1950)
Bull. Am. Math. Soc
, vol.56
, pp. 485-516
-
-
Mac Lane, S.1
-
15
-
-
33847321487
-
Dagger compact closed categories and completely positive maps
-
P. Selinger, Ed. (Electronic Notes in Theoretical Computer Sciences, Elsevier B.V)
-
P. Selinger, “Dagger compact closed categories and completely positive maps” in Quantum Physics and Logic, P. Selinger, Ed. (Electronic Notes in Theoretical Computer Sciences, Elsevier B.V., 2007), vol. 170, pp. 139–163.
-
(2007)
Quantum Physics and Logic
, vol.170
, pp. 139-163
-
-
Selinger, P.1
-
17
-
-
80052328927
-
Completeness of †-categories and the complex numbers
-
J. Vicary, Completeness of †-categories and the complex numbers. J. Math. Phys. 42, 082104 (2011).
-
(2011)
J. Math. Phys
, vol.42
, pp. 082104
-
-
Vicary, J.1
-
18
-
-
67651100782
-
An embedding theorem for Hilbert categories
-
C. Heunen, An embedding theorem for Hilbert categories. Theory Appl. Categ. 13, 321–344 (2009).
-
(2009)
Theory Appl. Categ
, vol.13
, pp. 321-344
-
-
Heunen, C.1
-
19
-
-
70449415212
-
Forms in infinite-dimensional spaces
-
I. Kaplansky, Forms in infinite-dimensional spaces. An. Acad. Bras. Cienc. 22, 1–17 (1950).
-
(1950)
An. Acad. Bras. Cienc
, vol.22
, pp. 1-17
-
-
Kaplansky, I.1
-
21
-
-
0000298707
-
Axiomatique quantique
-
C. Piron, Axiomatique quantique. Helv. Phys. Acta 37, 439–468 (1964).
-
(1964)
Helv. Phys. Acta
, vol.37
, pp. 439-468
-
-
Piron, C.1
-
22
-
-
84967779842
-
On characterizing the standard quantum logics
-
W. J. Wilbur, On characterizing the standard quantum logics. Trans. Am. Math. Soc. 233, 265–282 (1977).
-
(1977)
Trans. Am. Math. Soc
, vol.233
, pp. 265-282
-
-
Wilbur, W. J.1
-
23
-
-
0040498915
-
Hilbert lattices: New results and unsolved problems
-
H. Gross, Hilbert lattices: New results and unsolved problems. Found. Phys. 20, 529–559 (1990).
-
(1990)
Found. Phys
, vol.20
, pp. 529-559
-
-
Gross, H.1
-
24
-
-
21844491507
-
Characterization of Hilbert spaces by orthomodular spaces
-
M. P. Solèr, Characterization of Hilbert spaces by orthomodular spaces. Commun. Algebra 1, 219–243 (1995).
-
(1995)
Commun. Algebra
, vol.1
, pp. 219-243
-
-
Solèr, M. P.1
-
26
-
-
0032387250
-
Some characterizations of the underlying division ring of a Hilbert lattice by automorphisms
-
R. Mayet, Some characterizations of the underlying division ring of a Hilbert lattice by automorphisms. Int. J. Theor. Phys. 37, 109–114 (1998).
-
(1998)
Int. J. Theor. Phys
, vol.37
, pp. 109-114
-
-
Mayet, R.1
-
27
-
-
85081890418
-
Orthogonality spaces arising from infinite-dimensional complex Hilbert spaces
-
T. Vetterlein, Orthogonality spaces arising from infinite-dimensional complex Hilbert spaces. Int. J. Theor. Phys. 60, 727–738 (2021).
-
(2021)
Int. J. Theor. Phys
, vol.60
, pp. 727-738
-
-
Vetterlein, T.1
-
28
-
-
34548204380
-
Reconstruction of quantum theory
-
A. Grinbaum, Reconstruction of quantum theory. Br. J. Philos. Sci. 58, 387–408 (2007).
-
(2007)
Br. J. Philos. Sci
, vol.58
, pp. 387-408
-
-
Grinbaum, A.1
-
29
-
-
77953083086
-
Quantum logic in dagger kernel categories
-
C. Heunen, B. Jacobs, Quantum logic in dagger kernel categories. Order 27, 177–212 (2010).
-
(2010)
Order
, vol.27
, pp. 177-212
-
-
Heunen, C.1
Jacobs, B.2
-
30
-
-
84967782911
-
Orthomodularity in infinite dimensions; a theorem of M. Solèr
-
S. S. Holland Jr., Orthomodularity in infinite dimensions; a theorem of M. Solèr. Bull. Am. Math. Soc. 32, 205–234 (1995).
-
(1995)
Bull. Am. Math. Soc
, vol.32
, pp. 205-234
-
-
Holland, S. S.1
-
31
-
-
84861583874
-
Division algebras and quantum theory
-
J. C. Baez, Division algebras and quantum theory. Found. Phys. 42, 819–855 (2012).
-
(2012)
Found. Phys
, vol.42
, pp. 819-855
-
-
Baez, J. C.1
|