메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Boundary damage identification of a two-storey framed structure utilising frequency response functions and artificial neural networks

Author keywords

Artificial neural networks; Damage identification; Frequency response functions; Neural network ensembles; Principal component analysis; Structural health monitoring

Indexed keywords

DAMAGE DETECTION; DATA REDUCTION; FREQUENCY RESPONSE; MODAL ANALYSIS; NUMERICAL METHODS; PALMPRINT RECOGNITION; PATTERN RECOGNITION SYSTEMS; PRINCIPAL COMPONENT ANALYSIS; SIGNAL PROCESSING; SPURIOUS SIGNAL NOISE; STRUCTURAL DYNAMICS; STRUCTURAL FRAMES; STRUCTURAL HEALTH MONITORING;

EID: 85119102339     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (17)
  • 2
    • 0003438238 scopus 로고    scopus 로고
    • ANSYS INC, release 11.0
    • ANSYS INC (2007b) ANSYS Workbench. release 11.0.
    • (2007) ANSYS Workbench
  • 3
    • 0001044176 scopus 로고
    • Neural networks and their applications
    • BISHOP, C. M. (1994) Neural networks and their applications. Review of Scientific Instruments, 65, 1803-1832.
    • (1994) Review of Scientific Instruments , vol.65 , pp. 1803-1832
    • Bishop, C.M.1
  • 4
    • 84918595449 scopus 로고    scopus 로고
    • Modal analysis manual
    • Belgium
    • CADA-X (1996) Modal analysis manual. LMS International. Belgium.
    • (1996) LMS International
    • CADA-X1
  • 7
    • 25644441848 scopus 로고    scopus 로고
    • Damage location vector: A non-destructive structural damage detection technique
    • HUYNH, D., HE, J. & TRAN, D. (2005) Damage location vector: A non-destructive structural damage detection technique. Computers and Structures, 83, 2353-2367.
    • (2005) Computers and Structures , vol.83 , pp. 2353-2367
    • Huynh, D.1    He, J.2    Tran, D.3
  • 8
    • 0033131657 scopus 로고    scopus 로고
    • Fault identification using finite element models and neural networks
    • MARWALA, T. & HUNT, H. E. M. (1999) Fault identification using finite element models and neural networks Mechanical Systems and Signal Processing, 13, 475-490.
    • (1999) Mechanical Systems and Signal Processing , vol.13 , pp. 475-490
    • Marwala, T.1    Hunt, H.E.M.2
  • 10
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • PEARSON, K. (1901) On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2, 559-572.
    • (1901) Philosophical Magazine , vol.2 , pp. 559-572
    • Pearson, K.1
  • 11
  • 14
    • 29344438823 scopus 로고    scopus 로고
    • Analysis of the maximum likelihood, total least squares and principal component approaches for frequency response function estimation
    • WHITE, P. R., TAN, M. H. & HAMMOND, J. K. (2006) Analysis of the maximum likelihood, total least squares and principal component approaches for frequency response function estimation. Journal of Sound and Vibration, 290, 676-689.
    • (2006) Journal of Sound and Vibration , vol.290 , pp. 676-689
    • White, P.R.1    Tan, M.H.2    Hammond, J.K.3
  • 15
    • 0032095527 scopus 로고    scopus 로고
    • Making use of population information in evolutionary artificial neural networks
    • XIN, Y. & YONG, L. (1998) Making use of population information in evolutionary artificial neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 28, 417-425.
    • (1998) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.28 , pp. 417-425
    • Xin, Y.1    Yong, L.2
  • 16
    • 0035902057 scopus 로고    scopus 로고
    • Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection
    • ZANG, C. & IMREGUN, M. (2001) Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection. Journal of Sound and Vibration, 242, 813-827.
    • (2001) Journal of Sound and Vibration , vol.242 , pp. 813-827
    • Zang, C.1    Imregun, M.2
  • 17
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • ZHOU, Z.-H., WU, J. & TANG, W. (2002) Ensembling neural networks: many could be better than all. Artificial Intelligence, 137, 239-263.
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.