-
1
-
-
84957977429
-
A parabolic problem with a fractional time derivative
-
[1]
-
[1] M. Allen, L. Caffarelli, and A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.
-
(2016)
Arch. Ration. Mech. Anal
, vol.221
, pp. 603-630
-
-
Allen, M.1
Caffarelli, L.2
Vasseur, A.3
-
2
-
-
85008714408
-
Porous medium flow with both a fractional potential pressure and fractional time derivative
-
[2]
-
[2] M. Allen, L. Caffarelli, and A. Vasseur, Porous medium flow with both a fractional potential pressure and fractional time derivative, Chin. Ann. Math. Ser. B, 38 (2017), 45-82.
-
(2017)
Chin. Ann. Math. Ser. B
, vol.38
, pp. 45-82
-
-
Allen, M.1
Caffarelli, L.2
Vasseur, A.3
-
3
-
-
85068762191
-
-
[3] from P.L. Lions lectures at Collége de France
-
[3] P. Cardaliaguet, “Notes on Mean Field Games,” from P.L. Lions’ lectures at Collége de France, 2010.
-
(2010)
Notes on Mean Field Games
-
-
Cardaliaguet, P.1
-
4
-
-
84994339253
-
Fokker-Planck and Kolmogorov backward equations for continuous time random walk scaling limits
-
[4]
-
[4] B. Baeumer and P. Straka, Fokker-Planck and Kolmogorov backward equations for continuous time random walk scaling limits, Proc. Amer. Math. Soc., 145 (2017), 399-412.
-
(2017)
Proc. Amer. Math. Soc
, vol.145
, pp. 399-412
-
-
Baeumer, B.1
Straka, P.2
-
5
-
-
0000078998
-
From continuous time random walks to the fractional Fokker-Planck equation
-
[5]
-
[5] E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), 132-138.
-
(2000)
Phys. Rev. E
, vol.61
, pp. 132-138
-
-
Barkai, E.1
Metzler, R.2
Klafter, J.3
-
6
-
-
85021178193
-
Well-posedness of Hamilton-Jacobi equations with Caputo’s time-fractional derivative
-
[6]
-
[6] Y. Giga and T. Namba, Well-posedness of Hamilton-Jacobi equations with Caputo’s time-fractional derivative, Comm. Partial Diff. Eq., 42 (2017), 1088-1120.
-
(2017)
Comm. Partial Diff. Eq
, vol.42
, pp. 1088-1120
-
-
Giga, Y.1
Namba, T.2
-
7
-
-
84899464039
-
Mean field games - A brief survey
-
[7]
-
[7] D. Gomes and J.Saude, Mean field games - A brief survey, Dyn. Games Appl., 4 (2014), 110-154.
-
(2014)
Dyn. Games Appl
, vol.4
, pp. 110-154
-
-
Gomes, D.1
Saude, J.2
-
8
-
-
84856688304
-
SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations
-
[8]
-
[8] M. Hahn, K. Kobayashi, and S. Umarov, SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations, J. Theoret. Probab., 25 (2012), 262-279.
-
(2012)
J. Theoret. Probab
, vol.25
, pp. 262-279
-
-
Hahn, M.1
Kobayashi, K.2
Umarov, S.3
-
9
-
-
0033750757
-
Fractional diffusion based on Riemann-Liouville fractional derivatives
-
[9]
-
[9] R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives, J. Phys. Chem. B, 104 (2000), 3914-3917.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 3914-3917
-
-
Hilfer, R.1
-
10
-
-
39549087376
-
Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence prin- ciple
-
[10]
-
[10] M. Huang, R.P. Malhamé, and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence prin- ciple, Commun. Inf. Syst., 6 (2006), 221-251.
-
(2006)
Commun. Inf. Syst
, vol.6
, pp. 221-251
-
-
Huang, M.1
Malhamé, R.P.2
Caines, P.E.3
-
11
-
-
79960835672
-
Stochastic calculus for a time-changed semimartingale and the associ- ated stochastic differential equations
-
[11]
-
[11] K. Kobayashi, Stochastic calculus for a time-changed semimartingale and the associ- ated stochastic differential equations, J. Theor. Prob., 24 (2011), 789-820.
-
(2011)
J. Theor. Prob
, vol.24
, pp. 789-820
-
-
Kobayashi, K.1
-
12
-
-
85015461987
-
Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations
-
[12]
-
[12] V.N. Kolokoltsov and M.A. Veretennikova, Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations, Fract. Differ. Calc., 4 (2014), 1-30.
-
(2014)
Fract. Differ. Calc
, vol.4
, pp. 1-30
-
-
Kolokoltsov, V.N.1
Veretennikova, M.A.2
-
13
-
-
85106813878
-
A fractional Hamilton-Jacobi-Bellman equation for scaled limits of controlled continuous time random walks
-
[13]
-
[13] V.N. Kolokoltsov and M.A. Veretennikova, A fractional Hamilton-Jacobi-Bellman equation for scaled limits of controlled continuous time random walks, Commun. Appl. Ind. Math., 6 (2014), e-484.
-
(2014)
Commun. Appl. Ind. Math
, vol.6
, pp. e-484
-
-
Kolokoltsov, V.N.1
Veretennikova, M.A.2
-
15
-
-
84979577974
-
General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems
-
[15]
-
[15] Y. Luchko, and M. Yamamoto, General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems, Fract. Calc. Appl. Anal., 19 (2016), 676-695.
-
(2016)
Fract. Calc. Appl. Anal
, vol.19
, pp. 676-695
-
-
Luchko, Y.1
Yamamoto, M.2
-
16
-
-
84897648151
-
Comment on fractional Fokker-Planck equa- tion with space and time dependent drift and diffusion
-
[16]
-
[16] M. Magdziarz, J. Gajda, and T. Zorawik, Comment on fractional Fokker-Planck equa- tion with space and time dependent drift and diffusion, J. Stat. Phys., 154 (2014), 1241-1250.
-
(2014)
J. Stat. Phys
, vol.154
, pp. 1241-1250
-
-
Magdziarz, M.1
Gajda, J.2
Zorawik, T.3
-
17
-
-
48349113290
-
Triangular array limits for continuous time ran- dom walks
-
[17]
-
[17] M. Meerschaert and H.-P. Scheffler, Triangular array limits for continuous time ran- dom walks, Stochastic Process. Appl., 118 (2008), 1606-1633.
-
(2008)
Stochastic Process. Appl
, vol.118
, pp. 1606-1633
-
-
Meerschaert, M.1
Scheffler, H.-P.2
-
18
-
-
4043102385
-
Limit Theorems for Continuous-Time Random Walks with infinite mean waiting times
-
[18]
-
[18] M. Meerschaert and H.-P. Scheffler, Limit Theorems for Continuous-Time Random Walks with infinite mean waiting times, J. Appl. Prob., 41 (2004), 623-638.
-
(2004)
J. Appl. Prob
, vol.41
, pp. 623-638
-
-
Meerschaert, M.1
Scheffler, H.-P.2
-
20
-
-
0002641421
-
The random walk’s guide to anomalous diffusion: A frac- tional dynamics approach
-
[20]
-
[20] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A frac- tional dynamics approach, Phys. Rep., 339 (2000), 77 pp.
-
(2000)
Phys. Rep
, vol.339
, pp. 77
-
-
Metzler, R.1
Klafter, J.2
-
21
-
-
84964681239
-
Stochastic solution of fractional Fokker-Planck equations with space-time dependent coefficients
-
[21]
-
[21] E. Nane, and Y. Ni, Stochastic solution of fractional Fokker-Planck equations with space-time dependent coefficients, J. Math. Anal. Appl., 442 (2016), 103-116
-
(2016)
J. Math. Anal. Appl
, vol.442
, pp. 103-116
-
-
Nane, E.1
Ni, Y.2
-
23
-
-
85014094466
-
Existence and uniqueness for parabolic problems with Caputo time derivative
-
[23]
-
[23] E. Topp and M. Yangari, Existence and uniqueness for parabolic problems with Caputo time derivative, J.Differential Equations, 262 (2017), 6018-6046.
-
(2017)
J.Differential Equations
, vol.262
, pp. 6018-6046
-
-
Topp, E.1
Yangari, M.2
-
24
-
-
84908396089
-
A weak Harnack inequality for fractional evolution equations with discon- tinuous coefficients
-
[24]
-
[24] R. Zacher, A weak Harnack inequality for fractional evolution equations with discon- tinuous coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 903-940.
-
(2013)
Ann. Sc. Norm. Super. Pisa Cl. Sci
, vol.12
, pp. 903-940
-
-
Zacher, R.1
-
25
-
-
0345774722
-
Stochastic Controls, Hamiltonian Systems and Hamilton- Jacobi-Bellman Equations
-
[25] Springer
-
[25] J. Yong and X.Y. Zhou, “Stochastic Controls, Hamiltonian Systems and Hamilton- Jacobi-Bellman Equations,” Stochastic Modeling and Applied Probability, Springer (1999).
-
(1999)
Stochastic Modeling and Applied Probability
-
-
Yong, J.1
Zhou, X.Y.2
|