메뉴 건너뛰기




Volumn 24, Issue 9-10, 2019, Pages 531-554

A Time-Fractional Mean Field Game

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85115742342     PISSN: 10799389     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (18)

References (25)
  • 1
    • 84957977429 scopus 로고    scopus 로고
    • A parabolic problem with a fractional time derivative
    • [1]
    • [1] M. Allen, L. Caffarelli, and A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.
    • (2016) Arch. Ration. Mech. Anal , vol.221 , pp. 603-630
    • Allen, M.1    Caffarelli, L.2    Vasseur, A.3
  • 2
    • 85008714408 scopus 로고    scopus 로고
    • Porous medium flow with both a fractional potential pressure and fractional time derivative
    • [2]
    • [2] M. Allen, L. Caffarelli, and A. Vasseur, Porous medium flow with both a fractional potential pressure and fractional time derivative, Chin. Ann. Math. Ser. B, 38 (2017), 45-82.
    • (2017) Chin. Ann. Math. Ser. B , vol.38 , pp. 45-82
    • Allen, M.1    Caffarelli, L.2    Vasseur, A.3
  • 3
    • 85068762191 scopus 로고    scopus 로고
    • [3] from P.L. Lions lectures at Collége de France
    • [3] P. Cardaliaguet, “Notes on Mean Field Games,” from P.L. Lions’ lectures at Collége de France, 2010.
    • (2010) Notes on Mean Field Games
    • Cardaliaguet, P.1
  • 4
    • 84994339253 scopus 로고    scopus 로고
    • Fokker-Planck and Kolmogorov backward equations for continuous time random walk scaling limits
    • [4]
    • [4] B. Baeumer and P. Straka, Fokker-Planck and Kolmogorov backward equations for continuous time random walk scaling limits, Proc. Amer. Math. Soc., 145 (2017), 399-412.
    • (2017) Proc. Amer. Math. Soc , vol.145 , pp. 399-412
    • Baeumer, B.1    Straka, P.2
  • 5
    • 0000078998 scopus 로고    scopus 로고
    • From continuous time random walks to the fractional Fokker-Planck equation
    • [5]
    • [5] E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), 132-138.
    • (2000) Phys. Rev. E , vol.61 , pp. 132-138
    • Barkai, E.1    Metzler, R.2    Klafter, J.3
  • 6
    • 85021178193 scopus 로고    scopus 로고
    • Well-posedness of Hamilton-Jacobi equations with Caputo’s time-fractional derivative
    • [6]
    • [6] Y. Giga and T. Namba, Well-posedness of Hamilton-Jacobi equations with Caputo’s time-fractional derivative, Comm. Partial Diff. Eq., 42 (2017), 1088-1120.
    • (2017) Comm. Partial Diff. Eq , vol.42 , pp. 1088-1120
    • Giga, Y.1    Namba, T.2
  • 7
    • 84899464039 scopus 로고    scopus 로고
    • Mean field games - A brief survey
    • [7]
    • [7] D. Gomes and J.Saude, Mean field games - A brief survey, Dyn. Games Appl., 4 (2014), 110-154.
    • (2014) Dyn. Games Appl , vol.4 , pp. 110-154
    • Gomes, D.1    Saude, J.2
  • 8
    • 84856688304 scopus 로고    scopus 로고
    • SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations
    • [8]
    • [8] M. Hahn, K. Kobayashi, and S. Umarov, SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations, J. Theoret. Probab., 25 (2012), 262-279.
    • (2012) J. Theoret. Probab , vol.25 , pp. 262-279
    • Hahn, M.1    Kobayashi, K.2    Umarov, S.3
  • 9
    • 0033750757 scopus 로고    scopus 로고
    • Fractional diffusion based on Riemann-Liouville fractional derivatives
    • [9]
    • [9] R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives, J. Phys. Chem. B, 104 (2000), 3914-3917.
    • (2000) J. Phys. Chem. B , vol.104 , pp. 3914-3917
    • Hilfer, R.1
  • 10
    • 39549087376 scopus 로고    scopus 로고
    • Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence prin- ciple
    • [10]
    • [10] M. Huang, R.P. Malhamé, and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence prin- ciple, Commun. Inf. Syst., 6 (2006), 221-251.
    • (2006) Commun. Inf. Syst , vol.6 , pp. 221-251
    • Huang, M.1    Malhamé, R.P.2    Caines, P.E.3
  • 11
    • 79960835672 scopus 로고    scopus 로고
    • Stochastic calculus for a time-changed semimartingale and the associ- ated stochastic differential equations
    • [11]
    • [11] K. Kobayashi, Stochastic calculus for a time-changed semimartingale and the associ- ated stochastic differential equations, J. Theor. Prob., 24 (2011), 789-820.
    • (2011) J. Theor. Prob , vol.24 , pp. 789-820
    • Kobayashi, K.1
  • 12
    • 85015461987 scopus 로고    scopus 로고
    • Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations
    • [12]
    • [12] V.N. Kolokoltsov and M.A. Veretennikova, Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations, Fract. Differ. Calc., 4 (2014), 1-30.
    • (2014) Fract. Differ. Calc , vol.4 , pp. 1-30
    • Kolokoltsov, V.N.1    Veretennikova, M.A.2
  • 13
    • 85106813878 scopus 로고    scopus 로고
    • A fractional Hamilton-Jacobi-Bellman equation for scaled limits of controlled continuous time random walks
    • [13]
    • [13] V.N. Kolokoltsov and M.A. Veretennikova, A fractional Hamilton-Jacobi-Bellman equation for scaled limits of controlled continuous time random walks, Commun. Appl. Ind. Math., 6 (2014), e-484.
    • (2014) Commun. Appl. Ind. Math , vol.6 , pp. e-484
    • Kolokoltsov, V.N.1    Veretennikova, M.A.2
  • 14
  • 15
    • 84979577974 scopus 로고    scopus 로고
    • General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems
    • [15]
    • [15] Y. Luchko, and M. Yamamoto, General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems, Fract. Calc. Appl. Anal., 19 (2016), 676-695.
    • (2016) Fract. Calc. Appl. Anal , vol.19 , pp. 676-695
    • Luchko, Y.1    Yamamoto, M.2
  • 16
    • 84897648151 scopus 로고    scopus 로고
    • Comment on fractional Fokker-Planck equa- tion with space and time dependent drift and diffusion
    • [16]
    • [16] M. Magdziarz, J. Gajda, and T. Zorawik, Comment on fractional Fokker-Planck equa- tion with space and time dependent drift and diffusion, J. Stat. Phys., 154 (2014), 1241-1250.
    • (2014) J. Stat. Phys , vol.154 , pp. 1241-1250
    • Magdziarz, M.1    Gajda, J.2    Zorawik, T.3
  • 17
    • 48349113290 scopus 로고    scopus 로고
    • Triangular array limits for continuous time ran- dom walks
    • [17]
    • [17] M. Meerschaert and H.-P. Scheffler, Triangular array limits for continuous time ran- dom walks, Stochastic Process. Appl., 118 (2008), 1606-1633.
    • (2008) Stochastic Process. Appl , vol.118 , pp. 1606-1633
    • Meerschaert, M.1    Scheffler, H.-P.2
  • 18
    • 4043102385 scopus 로고    scopus 로고
    • Limit Theorems for Continuous-Time Random Walks with infinite mean waiting times
    • [18]
    • [18] M. Meerschaert and H.-P. Scheffler, Limit Theorems for Continuous-Time Random Walks with infinite mean waiting times, J. Appl. Prob., 41 (2004), 623-638.
    • (2004) J. Appl. Prob , vol.41 , pp. 623-638
    • Meerschaert, M.1    Scheffler, H.-P.2
  • 20
    • 0002641421 scopus 로고    scopus 로고
    • The random walk’s guide to anomalous diffusion: A frac- tional dynamics approach
    • [20]
    • [20] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A frac- tional dynamics approach, Phys. Rep., 339 (2000), 77 pp.
    • (2000) Phys. Rep , vol.339 , pp. 77
    • Metzler, R.1    Klafter, J.2
  • 21
    • 84964681239 scopus 로고    scopus 로고
    • Stochastic solution of fractional Fokker-Planck equations with space-time dependent coefficients
    • [21]
    • [21] E. Nane, and Y. Ni, Stochastic solution of fractional Fokker-Planck equations with space-time dependent coefficients, J. Math. Anal. Appl., 442 (2016), 103-116
    • (2016) J. Math. Anal. Appl , vol.442 , pp. 103-116
    • Nane, E.1    Ni, Y.2
  • 23
    • 85014094466 scopus 로고    scopus 로고
    • Existence and uniqueness for parabolic problems with Caputo time derivative
    • [23]
    • [23] E. Topp and M. Yangari, Existence and uniqueness for parabolic problems with Caputo time derivative, J.Differential Equations, 262 (2017), 6018-6046.
    • (2017) J.Differential Equations , vol.262 , pp. 6018-6046
    • Topp, E.1    Yangari, M.2
  • 24
    • 84908396089 scopus 로고    scopus 로고
    • A weak Harnack inequality for fractional evolution equations with discon- tinuous coefficients
    • [24]
    • [24] R. Zacher, A weak Harnack inequality for fractional evolution equations with discon- tinuous coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 903-940.
    • (2013) Ann. Sc. Norm. Super. Pisa Cl. Sci , vol.12 , pp. 903-940
    • Zacher, R.1
  • 25
    • 0345774722 scopus 로고    scopus 로고
    • Stochastic Controls, Hamiltonian Systems and Hamilton- Jacobi-Bellman Equations
    • [25] Springer
    • [25] J. Yong and X.Y. Zhou, “Stochastic Controls, Hamiltonian Systems and Hamilton- Jacobi-Bellman Equations,” Stochastic Modeling and Applied Probability, Springer (1999).
    • (1999) Stochastic Modeling and Applied Probability
    • Yong, J.1    Zhou, X.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.