메뉴 건너뛰기




Volumn 312, Issue 2, 2021, Pages 457-475

Cohopfian Groups And Accessible Group Classes

Author keywords

accessible group class; cohopfian group; cohopfian group class

Indexed keywords


EID: 85114441398     PISSN: 00308730     EISSN: 19455844     Source Type: Journal    
DOI: 10.2140/pjm.2021.312.457     Document Type: Article
Times cited : (94)

References (21)
  • 1
    • 0242275252 scopus 로고    scopus 로고
    • On co-Hopfian nilpotent groups
    • [Belegradek 2003] MR Zbl
    • [Belegradek 2003] I. Belegradek, “On co-Hopfian nilpotent groups”, Bull. Lond. Math. Soc. 35:6 (2003), 805–811. MR Zbl
    • (2003) Bull. Lond. Math. Soc , vol.35 , Issue.6 , pp. 805-811
    • Belegradek, I.1
  • 3
    • 0011357939 scopus 로고
    • Gruppi i cui sottogruppi propri contengono un sottogruppo nilpotente di indice finito
    • [Bruno 1984] (6) MR Zbl
    • [Bruno 1984] B. Bruno, “Gruppi i cui sottogruppi propri contengono un sottogruppo nilpotente di indice finito”, Boll. Un. Mat. Ital. D (6) 3:1 (1984), 179–188. MR Zbl
    • (1984) Boll. Un. Mat. Ital. D , vol.3 , Issue.1 , pp. 179-188
    • Bruno, B.1
  • 4
    • 0002925590 scopus 로고
    • On p-groups with ‘nilpotent-by-finite’ proper subgroups
    • [Bruno 1989] (7) MR Zbl
    • [Bruno 1989] B. Bruno, “On p-groups with ‘nilpotent-by-finite’ proper subgroups”, Boll. Un. Mat. Ital. A (7) 3:1 (1989), 45–51. MR Zbl
    • (1989) Boll. Un. Mat. Ital. A , vol.3 , Issue.1 , pp. 45-51
    • Bruno, B.1
  • 5
    • 0011636382 scopus 로고
    • Groups with restricted non-normal sub-groups
    • [Bruno and Phillips 1981] MR Zbl
    • [Bruno and Phillips 1981] B. Bruno and R. E. Phillips, “Groups with restricted non-normal sub-groups”, Math. Z. 176:2 (1981), 199–221. MR Zbl
    • (1981) Math. Z , vol.176 , Issue.2 , pp. 199-221
    • Bruno, B.1    Phillips, R. E.2
  • 6
    • 21844483252 scopus 로고
    • A note on groups with nilpotent-by-finite proper subgroups
    • [Bruno and Phillips 1995] MR Zbl
    • [Bruno and Phillips 1995] B. Bruno and R. E. Phillips, “A note on groups with nilpotent-by-finite proper subgroups”, Arch. Math. (Basel) 65:5 (1995), 369–374. MR Zbl
    • (1995) Arch. Math. (Basel) , vol.65 , Issue.5 , pp. 369-374
    • Bruno, B.1    Phillips, R. E.2
  • 7
    • 0037900671 scopus 로고    scopus 로고
    • Endomorphisms of Kleinian groups
    • [Delzant and Potyagailo 2003] MR Zbl
    • [Delzant and Potyagailo 2003] T. Delzant and L. Potyagailo, “Endomorphisms of Kleinian groups”, Geom. Funct. Anal. 13:2 (2003), 396–436. MR Zbl
    • (2003) Geom. Funct. Anal , vol.13 , Issue.2 , pp. 396-436
    • Delzant, T.1    Potyagailo, L.2
  • 8
    • 0031206509 scopus 로고    scopus 로고
    • Hopfian and co-Hopfian groups
    • [Deo and Varadarajan 1997] MR Zbl
    • [Deo and Varadarajan 1997] S. Deo and K. Varadarajan, “Hopfian and co-Hopfian groups”, Bull. Aust. Math. Soc. 56:1 (1997), 17–24. MR Zbl
    • (1997) Bull. Aust. Math. Soc , vol.56 , Issue.1 , pp. 17-24
    • Deo, S.1    Varadarajan, K.2
  • 9
    • 0033417056 scopus 로고    scopus 로고
    • Groups with the minimum condition on insoluble subgroups
    • [Dixon and Evans 1999] MR Zbl
    • [Dixon and Evans 1999] M. R. Dixon and M. J. Evans, “Groups with the minimum condition on insoluble subgroups”, Arch. Math. (Basel) 72:4 (1999), 241–251. MR Zbl
    • (1999) Arch. Math. (Basel) , vol.72 , Issue.4 , pp. 241-251
    • Dixon, M. R.1    Evans, M. J.2
  • 10
    • 27344456592 scopus 로고    scopus 로고
    • On co-Hopfian groups
    • and Robinson 2005] and, [MR Zbl
    • [Endimioni and Robinson 2005] G. Endimioni and D. J. S. Robinson, “On co-Hopfian groups”, Publ. Math. Debrecen 67:3-4 (2005), 423–436. MR Zbl
    • (2005) Publ. Math. Debrecen , vol.67 , Issue.3-4 , pp. 423-436
    • Endimioni1    Endimioni, G.2    Robinson, D. J. S.3
  • 11
    • 85073192638 scopus 로고    scopus 로고
    • Groups whose nonnormal subgroups are metahamiltonian
    • [Esposito et al. 2020] MR Zbl
    • [Esposito et al. 2020] D. Esposito, F. de Giovanni, and M. Trombetti, “Groups whose nonnormal subgroups are metahamiltonian”, Bull. Aust. Math. Soc. 102:1 (2020), 96–103. MR Zbl
    • (2020) Bull. Aust. Math. Soc , vol.102 , Issue.1 , pp. 96-103
    • Esposito, D.1    de Giovanni, F.2    Trombetti, M.3
  • 12
    • 84940902124 scopus 로고    scopus 로고
    • Infinite minimal non-hypercyclic groups
    • [de Giovanni and Trombetti 2015] 10, art. id. MR Zbl
    • [de Giovanni and Trombetti 2015] F. de Giovanni and M. Trombetti, “Infinite minimal non-hypercyclic groups”, J. Algebra Appl. 14:10 (2015), art. id. 1550143. MR Zbl
    • (2015) J. Algebra Appl , vol.14 , pp. 1550143
    • de Giovanni, F.1    Trombetti, M.2
  • 13
    • 85114445515 scopus 로고    scopus 로고
    • ADV perspectives in group theory: question 8D
    • [de Giovanni and Trombetti 2019]
    • [de Giovanni and Trombetti 2019] F. de Giovanni and M. Trombetti, “ADV perspectives in group theory: question 8D”, Adv. Group Theory Appl. 8 (2019), 161–162.
    • (2019) Adv. Group Theory Appl , vol.8 , pp. 161-162
    • de Giovanni, F.1    Trombetti, M.2
  • 14
    • 85086275730 scopus 로고    scopus 로고
    • Groups whose proper subgroups are metahamiltonian-by-finite
    • [de Giovanni and Trombetti 2020] MR Zbl
    • [de Giovanni and Trombetti 2020] F. de Giovanni and M. Trombetti, “Groups whose proper subgroups are metahamiltonian-by-finite”, Rocky Mountain J. Math. 50:1 (2020), 153–162. MR Zbl
    • (2020) Rocky Mountain J. Math , vol.50 , Issue.1 , pp. 153-162
    • de Giovanni, F.1    Trombetti, M.2
  • 15
    • 0000022304 scopus 로고
    • A group with trivial centre satisfying the normalizer condition
    • [Heineken and Mohamed 1968] MR Zbl
    • [Heineken and Mohamed 1968] H. Heineken and I. J. Mohamed, “A group with trivial centre satisfying the normalizer condition”, J. Algebra 10 (1968), 368–376. MR Zbl
    • (1968) J. Algebra , vol.10 , pp. 368-376
    • Heineken, H.1    Mohamed, I. J.2
  • 16
    • 84968510999 scopus 로고
    • Non-abelian groups in which every subgroup is abelian
    • [Miller and Moreno 1903] MR Zbl
    • [Miller and Moreno 1903] G. A. Miller and H. C. Moreno, “Non-abelian groups in which every subgroup is abelian”, Trans. Amer. Math. Soc. 4:4 (1903), 398–404. MR Zbl
    • (1903) Trans. Amer. Math. Soc , vol.4 , Issue.4 , pp. 398-404
    • Miller, G. A.1    Moreno, H. C.2
  • 17
    • 35248862135 scopus 로고
    • A theory of sets
    • [Morse 1965] Academic Press, New York, MR Zbl
    • [Morse 1965] A. P. Morse, A theory of sets, Pure Appl. Math. 18, Academic Press, New York, 1965. MR Zbl
    • (1965) Pure Appl. Math , vol.18
    • Morse, A. P.1
  • 18
    • 0009277178 scopus 로고
    • Discrete subgroups isomorphic to lattices in semisimple Lie groups
    • [Prasad 1976] MR Zbl
    • [Prasad 1976] G. Prasad, “Discrete subgroups isomorphic to lattices in semisimple Lie groups”, Amer. J. Math. 98:1 (1976), 241–261. MR Zbl
    • (1976) Amer. J. Math , vol.98 , Issue.1 , pp. 241-261
    • Prasad, G.1
  • 19
    • 0003797206 scopus 로고
    • Finiteness conditions and generalized soluble groups, I
    • [Robinson 1972a] Ergebnisse der Mathematik 62, Springer, MR Zbl
    • [Robinson 1972a] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, I, Ergebnisse der Mathematik 62, Springer, 1972. MR Zbl
    • (1972)
    • Robinson, D. J. S.1
  • 20
    • 85114409691 scopus 로고
    • Finiteness conditions and generalized soluble groups, II
    • [Robinson 1972b] Springer, MR Zbl
    • [Robinson 1972b] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, II, Ergebnisse der Mathematik 63, Springer, 1972. MR Zbl
    • (1972) Ergebnisse der Mathematik , vol.63
    • Robinson, D. J. S.1
  • 21
    • 0039862430 scopus 로고
    • Compressibility in nilpotent groups
    • [Smith 1985] MR Zbl Received February 26, 2020. Revised January 7, 2021
    • [Smith 1985] G. C. Smith, “Compressibility in nilpotent groups”, Bull. Lond. Math. Soc. 17:5 (1985), 453–457. MR Zbl Received February 26, 2020. Revised January 7, 2021
    • (1985) Bull. Lond. Math. Soc , vol.17 , Issue.5 , pp. 453-457
    • Smith, G. C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.