메뉴 건너뛰기




Volumn 54, Issue 1, 2021, Pages 431-460

Comparison and assessment of different object-based classifications using machine learning algorithms and UAVs multispectral imagery: a case study in a citrus orchard and an onion crop

Author keywords

eCognition; Geographic Object Based Image Analysis (GEOBIA); Orfeo Toolbox (OTB); Precision agriculture (PA); RGISLib and Scikit learn; Segmentation and classification accuracy assessment

Indexed keywords

ANTENNAS; CROPS; DECISION TREES; IMAGE CLASSIFICATION; LARGE SCALE SYSTEMS; LEARNING SYSTEMS; NEAREST NEIGHBOR SEARCH; ORCHARDS; REMOTE SENSING; SOFTWARE TESTING; SUPPORT VECTOR MACHINES;

EID: 85111372463     PISSN: None     EISSN: 22797254     Source Type: Journal    
DOI: 10.1080/22797254.2021.1951623     Document Type: Article
Times cited : (43)

References (138)
  • 1
    • 85067414830 scopus 로고    scopus 로고
    • UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning
    • Abdulridha, J., Batuman, O., & Ampatzidis, Y., (2019a). UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sens, 11 (11), 1373. doi: 10.3390/rs11111373
    • (2019) Remote Sens , vol.11 , Issue.11 , pp. 1373
    • Abdulridha, J.1    Batuman, O.2    Ampatzidis, Y.3
  • 2
    • 85058235908 scopus 로고    scopus 로고
    • A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses
    • Abdulridha, J., Ehsani, R., Abd-Elrahman, A., & Ampatzidis, Y., (2019b). A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses. Comput. Electron. Agric, 156, 549–557. doi: 10.1016/j.compag.2018.12.018
    • (2019) Comput. Electron. Agric , vol.156 , pp. 549-557
    • Abdulridha, J.1    Ehsani, R.2    Abd-Elrahman, A.3    Ampatzidis, Y.4
  • 3
    • 85111407058 scopus 로고    scopus 로고
    • Assessment of multiresolution segmentation for extracting greenhouses from worldView-2 imagery
    • Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., 41, 145–152, Altman, N.S., 1992. An introduction to kernel and nearest-neighbor nonparametric regression
    • Aguilar, M. A., Aguilar, F. J., García Lorca, A., Guirado, E., Betlej, M., Cichon, P., Nemmaoui, A., Vallario, A., & Parente, C., (2016). Assessment of multiresolution segmentation for extracting greenhouses from worldView-2 imagery. Am. Stat, 46, 175–185. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., 41, 145–152. https://doi.org/10.5194/isprs-archives-XLI-B7-145-2016. Altman, N.S., 1992. An introduction to kernel and nearest-neighbor nonparametric regression. doi: 10.1080/00031305.1992.10475879.
    • (2016) Am. Stat , vol.46 , pp. 175-185
    • Aguilar, M.A.1    Aguilar, F.J.2    García Lorca, A.3    Guirado, E.4    Betlej, M.5    Cichon, P.6    Nemmaoui, A.7    Vallario, A.8    Parente, C.9
  • 5
    • 33747139337 scopus 로고    scopus 로고
    • On scales and dynamics in observing the environment
    • Aplin, P., (2006). On scales and dynamics in observing the environment. Int. J. Remote Sens, 27 (11), 2123–2140. doi: 10.1080/01431160500396477
    • (2006) Int. J. Remote Sens , vol.27 , Issue.11 , pp. 2123-2140
    • Aplin, P.1
  • 6
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution segmentation - An optimization approach for high quality multi-scale image segmentation
    • Strobl J., Blaschke T., Griesbner G., (eds), Wichmann Verlag, &,. (Eds
    • Baatz, M., & Schape, A., (2000). Multiresolution segmentation - An optimization approach for high quality multi-scale image segmentation. In J., Strobl, T., Blaschke, & G., Griesbner (Eds.), Angewandte Geographische Informations-Verarbeitung (Vol. XII, pp. 12–23). Wichmann Verlag.
    • (2000) Angewandte Geographische Informations-Verarbeitung , vol.12 , pp. 12-23
    • Baatz, M.1    Schape, A.2
  • 7
    • 85033436404 scopus 로고    scopus 로고
    • Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis., Remote Sensing of Environment, 204(September
    • Belgiu, M., & Csillik, O., (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204(September), 509–523. https://doi.org/10.1016/j.rse.2017.10.005
    • (2018) , pp. 509-523
    • Belgiu, M.1    Csillik, O.2
  • 8
    • 84904909081 scopus 로고    scopus 로고
    • Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery
    • Belgiu, M., & Drǎguţ, L., (2014). Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 96, 67–75. doi: 10.1016/j.isprsjprs.2014.07.002
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.96 , pp. 67-75
    • Belgiu, M.1    Drǎguţ, L.2
  • 9
    • 84961834117 scopus 로고    scopus 로고
    • Random forest in remote sensing: A review of applications and future directions
    • Belgiu, M., & Drăguţ, L., (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens, 114, 24–31. doi: 10.1016/j.isprsjprs.2016.01.011
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.114 , pp. 24-31
    • Belgiu, M.1    Drăguţ, L.2
  • 10
    • 0002215069 scopus 로고
    • On a measure of divergence between two statistical populations defined by their probability distributions
    • Bhattacharyya, A., (1943). On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc, 35, 99–109.
    • (1943) Bull. Calcutta Math. Soc , vol.35 , pp. 99-109
    • Bhattacharyya, A.1
  • 11
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Blaschke, T., (2010). Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens, 65 (1), 2–16. doi: 10.1016/j.isprsjprs.2009.06.004
    • (2010) ISPRS J. Photogramm. Remote Sens , vol.65 , Issue.1 , pp. 2-16
    • Blaschke, T.1
  • 14
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., (2001). Random forests. Mach. Learn, 45 (1), 5–32. doi: 10.1023/A:1010933404324
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 15
    • 85042533773 scopus 로고    scopus 로고
    • Estimating barley biomass with crop surface models from oblique RGB imagery
    • Brocks, S., & Bareth, G., (2018). Estimating barley biomass with crop surface models from oblique RGB imagery. Remote Sens, 10(2). doi: 10.3390/rs10020268
    • (2018) Remote Sens , pp. 10(2)
    • Brocks, S.1    Bareth, G.2
  • 16
    • 84887828475 scopus 로고    scopus 로고
    • The remote sensing and GIS software library (RSGISLib)
    • Bunting, P., Clewley, D., Lucas, R. M., & Gillingham, S., (2014). The remote sensing and GIS software library (RSGISLib). Comput. Geosci, 62, 216–226. doi: 10.1016/j.cageo.2013.08.007
    • (2014) Comput. Geosci , vol.62 , pp. 216-226
    • Bunting, P.1    Clewley, D.2    Lucas, R.M.3    Gillingham, S.4
  • 17
    • 84937860942 scopus 로고    scopus 로고
    • Evaluating multispectral images and vegetation indices for precision farming applications from UAV images
    • Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M., (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens, 7 (4), 4026–4047. doi: 10.3390/rs70404026
    • (2015) Remote Sens , vol.7 , Issue.4 , pp. 4026-4047
    • Candiago, S.1    Remondino, F.2    De Giglio, M.3    Dubbini, M.4    Gattelli, M.5
  • 18
    • 84904466762 scopus 로고    scopus 로고
    • A python-based open source system for geographic object-based image analysis (GEOBIA) utilizing raster attribute tables
    • Clewley, D., Bunting, P., Shepherd, J., Gillingham, S., Flood, N., Dymond, J., Lucas, R., Armston, J., & Moghaddam, M., (2014). A python-based open source system for geographic object-based image analysis (GEOBIA) utilizing raster attribute tables. Remote Sens, 6 (7), 6111–6135. doi: 10.3390/rs6076111
    • (2014) Remote Sens , vol.6 , Issue.7 , pp. 6111-6135
    • Clewley, D.1    Bunting, P.2    Shepherd, J.3    Gillingham, S.4    Flood, N.5    Dymond, J.6    Lucas, R.7    Armston, J.8    Moghaddam, M.9
  • 21
    • 84865124691 scopus 로고    scopus 로고
    • The physiology of adaptation and yield expression in Olive
    • 31, (4
    • Connor, D. J., & Fereres, E., (2010). The physiology of adaptation and yield expression in Olive. Horticultural Reviews, 31 (4). doi: 10.1002/9780470650882.ch4
    • (2010) Horticultural Reviews
    • Connor, D.J.1    Fereres, E.2
  • 22
    • 34249753618 scopus 로고
    • Support-vector networks editor
    • Cortes, C., & Vapnik, V., (1995). Support-vector networks editor. Mach. Learn, 20 (3), 273–297. doi: 10.1023/A:1022627411411
    • (1995) Mach. Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 23
    • 85037527926 scopus 로고    scopus 로고
    • Supervised methods of image segmentation accuracy assessment in land cover mapping
    • Costa, H., Foody, G. M., & Boyd, D. S., (2018). Supervised methods of image segmentation accuracy assessment in land cover mapping. Remote Sensing of Environment, 205, 338–351. doi: 10.1016/j.rse.2017.11.024
    • (2018) Remote Sensing of Environment , vol.205 , pp. 338-351
    • Costa, H.1    Foody, G.M.2    Boyd, D.S.3
  • 24
    • 85085559239 scopus 로고    scopus 로고
    • Discrimination of species composition types of a grazed pasture landscape using sentinel-1 and sentinel-2 data
    • Crabbe, R. A., Lamb, D., & Edwards, C., (2020). Discrimination of species composition types of a grazed pasture landscape using sentinel-1 and sentinel-2 data. International Journal of Applied Earth Observation and Geoinformation, 84, 101978. doi: 10.1016/j.jag.2019.101978
    • (2020) International Journal of Applied Earth Observation and Geoinformation , vol.84 , pp. 101978
    • Crabbe, R.A.1    Lamb, D.2    Edwards, C.3
  • 25
    • 85060702279 scopus 로고    scopus 로고
    • Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks
    • Csillik, O., Cherbini, J., Johnson, R., Lyons, A., & Kelly, M., (2018). Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks. Drones, 2 (4), 39. doi: 10.3390/drones2040039
    • (2018) Drones , vol.2 , Issue.4 , pp. 39
    • Csillik, O.1    Cherbini, J.2    Johnson, R.3    Lyons, A.4    Kelly, M.5
  • 27
    • 85042537525 scopus 로고    scopus 로고
    • An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery
    • De Castro, A. I., Torres-Sánchez, J., Peña, J. M., Jiménez-Brenes, F. M., Csillik, O., & López-Granados, F., (2018). An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sens, 10 (3), 1–21. doi: 10.3390/rs10020285
    • (2018) Remote Sens , vol.10 , Issue.3 , pp. 1-21
    • De Castro, A.I.1    Torres-Sánchez, J.2    Peña, J.M.3    Jiménez-Brenes, F.M.4    Csillik, O.5    López-Granados, F.6
  • 28
    • 85066755628 scopus 로고    scopus 로고
    • Object-based land cover classification of cork oak woodlands using UAV imagery and orfeo toolBox
    • De Luca, G. N., Silva, J. M., Cerasoli, S., Araújo, J., Campos, J., Di Fazio, S., & Modica, G., (2019). Object-based land cover classification of cork oak woodlands using UAV imagery and orfeo toolBox. Remote Sens, 11 (10), 1238. doi: 10.3390/rs11101238
    • (2019) Remote Sens , vol.11 , Issue.10 , pp. 1238
    • De Luca, G.N.1    Silva, J.M.2    Cerasoli, S.3    Araújo, J.4    Campos, J.5    Di Fazio, S.6    Modica, G.7
  • 29
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T., (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computat, 10 (7), 1895–1923. doi: 10.1162/089976698300017197
    • (1998) Neural Computat , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.1
  • 31
    • 84891136260 scopus 로고    scopus 로고
    • Automated parameterisation for multi-scale image segmentation on multiple layers
    • Drǎguţ, L., Csillik, O., Eisank, C., & Tiede, D., (2014). Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens, 88, 119–127. doi: 10.1016/j.isprsjprs.2013.11.018
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.88 , pp. 119-127
    • Drǎguţ, L.1    Csillik, O.2    Eisank, C.3    Tiede, D.4
  • 35
    • 0016509650 scopus 로고
    • The estimation of the gradient of a density function, with applications in pattern recognition
    • 21,), 32– 40
    • Fukunaga, K., & Hostetler, L. D., (1975). The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, 21 (1), 32– 40. doi: 10.1109/TIT.1975.1055330
    • (1975) IEEE Transactions on Information Theory
    • Fukunaga, K.1    Hostetler, L.D.2
  • 37
    • 79960048515 scopus 로고    scopus 로고
    • Optimal region growing segmentation and its effect on classification accuracy
    • Gao, Y., Mas, J. F., Kerle, N., & Navarrete Pacheco, J. A., (2011)). Optimal region growing segmentation and its effect on classification accuracy. Int. J. Remote Sens, 2011 (13), 3747–3763. doi: 10.1080/01431161003777189
    • (2011) Int. J. Remote Sens , vol.2011 , Issue.13 , pp. 3747-3763
    • Gao, Y.1    Mas, J.F.2    Kerle, N.3    Navarrete Pacheco, J.A.4
  • 38
    • 85082658867 scopus 로고    scopus 로고
    • An automatic method for weed mapping in oat fields based on UAV imagery
    • Gašparović, M., Zrinjski, M., Barković, Đ., & Radočaj, D., (2020). An automatic method for weed mapping in oat fields based on UAV imagery. Comput. Electron. Agric, 173, 105385. doi: 10.1016/j.compag.2020.105385
    • (2020) Comput. Electron. Agric , vol.173 , pp. 105385
    • Gašparović, M.1    Zrinjski, M.2    Barković, Đ.3    Radočaj, D.4
  • 40
    • 85035758443 scopus 로고    scopus 로고
    • Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application
    • 55,), 221–242
    • Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Kalogirou, S., & Wolff, E., (2018). Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GIScience Remote Sens, 55 (2), 221–242. doi: 10.1080/15481603.2017.1408892
    • (2018) GIScience Remote Sens
    • Georganos, S.1    Grippa, T.2    Vanhuysse, S.3    Lennert, M.4    Shimoni, M.5    Kalogirou, S.6    Wolff, E.7
  • 41
    • 0030453414 scopus 로고    scopus 로고
    • Use of a green channel in remote sensing of global vegetation from EOS- MODIS
    • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N., (1996). Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sens. Environ, 58 (3), 289–298. doi: 10.1016/S0034-4257(96)00072-7
    • (1996) Remote Sens. Environ , vol.58 , Issue.3 , pp. 289-298
    • Gitelson, A.A.1    Kaufman, Y.J.2    Merzlyak, M.N.3
  • 42
    • 0032444460 scopus 로고    scopus 로고
    • Remote sensing of chlorophyll concentration in higher plant leaves
    • Gitelson, A. A., & Merzlyak, M. N., (1998). Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Sp. Res, 22 (5), 689–692. doi: 10.1016/S0273-1177(97)01133-2
    • (1998) Adv. Sp. Res , vol.22 , Issue.5 , pp. 689-692
    • Gitelson, A.A.1    Merzlyak, M.N.2
  • 44
    • 24644443221 scopus 로고    scopus 로고
    • A probabilistic interpretation of precision, recall and F-score, with implication for evaluation
    • Goutte, C., & Gaussier, E., (2005). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. Lect. Notes Comput. Sci, 3408, 345–359. doi: 10.1007/978-3-540-31865-1_25
    • (2005) Lect. Notes Comput. Sci , vol.3408 , pp. 345-359
    • Goutte, C.1    Gaussier, E.2
  • 45
    • 85061452265 scopus 로고    scopus 로고
    • Integrating GEOBIA, Machine Learning, and Volunteered Geographic Information to Map Vegetation over Rooftops., ISPRS International Journal of Geo-Information, 7, (12), 462
    • Griffith, D., & Hay, G. (2018). Integrating GEOBIA, Machine Learning, and Volunteered Geographic Information to Map Vegetation over Rooftops. ISPRS International Journal of Geo-Information, 7 (12), 462. doi: 10.3390/ijgi7120462
    • (2018)
    • Griffith, D.1    Hay, G.2
  • 46
    • 85061991968 scopus 로고    scopus 로고
    • Machine learning made easy: A review of scikit-learn package in python programming language
    • Hao, J., & Ho, T. K., (2019). Machine learning made easy: A review of scikit-learn package in python programming language. J. Educ. Behav. Stat, 44 (3), 348–361. doi: 10.3102/1076998619832248
    • (2019) J. Educ. Behav. Stat , vol.44 , Issue.3 , pp. 348-361
    • Hao, J.1    Ho, T.K.2
  • 47
    • 67651084257 scopus 로고    scopus 로고
    • Object-based image analysis: strengths, weaknesses, opportunities and threats (SWOT), in: the international archives of the photogrammetry
    • Hay, G. J., & Castilla, G., (2006). Object-based image analysis: strengths, weaknesses, opportunities and threats (SWOT), in: the international archives of the photogrammetry. Remote Sensing and Spatial Information Sciences, 4–5. https://www.isprs.org/proceedings/XXXVI/4-C42/Papers/01_Opening%20Session/OBIA2006_Hay_Castilla.pdf
    • (2006) Remote Sensing and Spatial Information Sciences , pp. 4-5
    • Hay, G.J.1    Castilla, G.2
  • 48
    • 82155168615 scopus 로고    scopus 로고
    • Quantifying the robustness of fuzzy rule sets in object-based image analysis
    • Hofmann, P., Blaschke, T., & Strobl, J., (2011). Quantifying the robustness of fuzzy rule sets in object-based image analysis. Int. J. Remote Sens, 32 (22), 7359–7381. doi: 10.1080/01431161.2010.523727
    • (2011) Int. J. Remote Sens , vol.32 , Issue.22 , pp. 7359-7381
    • Hofmann, P.1    Blaschke, T.2    Strobl, J.3
  • 49
    • 85061903227 scopus 로고    scopus 로고
    • Segmentation for object-based image analysis (OBIA): A review of algorithms and challenges from remote sensing perspective
    • Hossain, M. D., & Chen, D., (2019). Segmentation for object-based image analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogramm. Remote Sens, 150, 115–134. doi: 10.1016/j.isprsjprs.2019.02.009
    • (2019) ISPRS J. Photogramm. Remote Sens , vol.150 , pp. 115-134
    • Hossain, M.D.1    Chen, D.2
  • 50
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang, C., Davis, L. S., & Townshend, J. R. G., (2002). An assessment of support vector machines for land cover classification. Int. J. Remote Sens, 23 (4), 725–749. doi: 10.1080/01431160110040323
    • (2002) Int. J. Remote Sens , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 51
    • 85077504071 scopus 로고    scopus 로고
    • Deep learning versus object-based image analysis (OBIA) in weed mapping of UAV imagery
    • Huang, H., Lan, Y., Yang, A., Zhang, Y., Wen, S., & Deng, J., (2020). Deep learning versus object-based image analysis (OBIA) in weed mapping of UAV imagery. Int. J. Remote Sens, 41 (9), 3446–3479. doi: 10.1080/01431161.2019.1706112
    • (2020) Int. J. Remote Sens , vol.41 , Issue.9 , pp. 3446-3479
    • Huang, H.1    Lan, Y.2    Yang, A.3    Zhang, Y.4    Wen, S.5    Deng, J.6
  • 52
    • 84949520073 scopus 로고    scopus 로고
    • Spectral–spatial hyperspectral image classification based on KNN
    • Huang, K., Li, S., Kang, X., & Fang, L., (2016). Spectral–spatial hyperspectral image classification based on KNN. Sens. Imaging, 17 (1), 1–13. doi: 10.1007/s11220-015-0126-z
    • (2016) Sens. Imaging , vol.17 , Issue.1 , pp. 1-13
    • Huang, K.1    Li, S.2    Kang, X.3    Fang, L.4
  • 53
    • 85036524454 scopus 로고    scopus 로고
    • What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?
    • 39, 5345–5376
    • Hunt, E. R., & Daughtry, C. S. T., (2018). What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?. Int. J. Remote Sens, 39, 5345–5376. doi: 10.1080/01431161.2017.1410300
    • (2018) Int. J. Remote Sens
    • Hunt, E.R.1    Daughtry, C.S.T.2
  • 54
    • 84962488348 scopus 로고    scopus 로고
    • First experience with sentinel-2 data for crop and tree species classifications in central Europe
    • Immitzer, M., Vuolo, F., & Atzberger, C., (2016). First experience with sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens, 8(3). doi: 10.3390/rs8030166
    • (2016) Remote Sens , pp. 8(3)
    • Immitzer, M.1    Vuolo, F.2    Atzberger, C.3
  • 57
    • 85022098197 scopus 로고    scopus 로고
    • Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling
    • Jiménez-Brenes, F. M., López-Granados, F., De Castro, A. I., Torres-Sánchez, J., Serrano, N., & Peña, J. M., (2017). Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling. Plant Methods, 13 (1), 55. doi: 10.1186/s13007-017-0205-3
    • (2017) Plant Methods , vol.13 , Issue.1 , pp. 55
    • Jiménez-Brenes, F.M.1    López-Granados, F.2    De Castro, A.I.3    Torres-Sánchez, J.4    Serrano, N.5    Peña, J.M.6
  • 58
    • 85032331266 scopus 로고    scopus 로고
    • Chapter 33 - Object-Oriented Random Forest for High Resolution Land Cover Mapping Using Quickbird-2 Imagery
    • Samui P., Sekhar S., Valentina E.B.T., (eds), Academic Press,. Eds
    • Kavzoglu, T., (2017). Chapter 33 - Object-Oriented Random Forest for High Resolution Land Cover Mapping Using Quickbird-2 Imagery. In P., Samui, S., Sekhar, & E.B.T., Valentina Eds., Handbook of Neural Computation Balas (pp. 607–619). Academic Press. doi:https://doi.org/10.1016/B978-0-12-811318-9.00033-8.
    • (2017) Handbook of Neural Computation Balas , pp. 607-619
    • Kavzoglu, T.1
  • 59
    • 85015302475 scopus 로고    scopus 로고
    • Object-based urban tree species classification using bi-temporal worldview-2 and worldview-3 images
    • Li, D., Ke, Y., Gong, H., & Li, X., (2015). Object-based urban tree species classification using bi-temporal worldview-2 and worldview-3 images. Remote Sensing, 7 (12), 16917–16937. doi: 10.3390/rs71215861
    • (2015) Remote Sensing , vol.7 , Issue.12 , pp. 16917-16937
    • Li, D.1    Ke, Y.2    Gong, H.3    Li, X.4
  • 60
    • 85017406334 scopus 로고    scopus 로고
    • A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments
    • Li, M., Ma, L., Blaschke, T., Cheng, L., & Tiede, D., (2016). A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int. J. Appl. Earth Obs. Geoinf, 49, 87–98. doi: 10.1016/j.jag.2016.01.011
    • (2016) Int. J. Appl. Earth Obs. Geoinf , vol.49 , pp. 87-98
    • Li, M.1    Ma, L.2    Blaschke, T.3    Cheng, L.4    Tiede, D.5
  • 62
    • 79955383550 scopus 로고    scopus 로고
    • Assessing object-based classification: advantages and limitations
    • Liu, D., & Xia, F., (2010). Assessing object-based classification: advantages and limitations. Remote Sens. Lett, 1 (4), 187–194. doi: 10.1080/01431161003743173
    • (2010) Remote Sens. Lett , vol.1 , Issue.4 , pp. 187-194
    • Liu, D.1    Xia, F.2
  • 63
    • 78650974078 scopus 로고    scopus 로고
    • Weed detection for site-specific weed management: mapping and real-time approaches
    • López-Granados, F., (2010). Weed detection for site-specific weed management: mapping and real-time approaches. Weed Res, 51 (1), 1–11. doi: 10.1111/j.1365-3180.2010.00829.x
    • (2010) Weed Res , vol.51 , Issue.1 , pp. 1-11
    • López-Granados, F.1
  • 64
    • 84939247593 scopus 로고    scopus 로고
    • Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds
    • 17,), 183–199
    • López-Granados, F., Torres-Sánchez, J., Serrano-Pérez, A., De Castro, A. I., Mesas-Carrascosa, F. J., & Peña, J. M., (2016). Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds. Precis. Agric, 17 (2), 183–199. doi: 10.1007/s11119-015-9415-8
    • (2016) Precis. Agric
    • López-Granados, F.1    Torres-Sánchez, J.2    Serrano-Pérez, A.3    De Castro, A.I.4    Mesas-Carrascosa, F.J.5    Peña, J.M.6
  • 65
    • 84922357427 scopus 로고    scopus 로고
    • Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery
    • Ma, L., Cheng, L., Li, M., Liu, Y., & Ma, X., (2015). Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery. ISPRS J. Photogramm. Remote Sens, 102, 14–27. doi: 10.1016/j.isprsjprs.2014.12.026
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.102 , pp. 14-27
    • Ma, L.1    Cheng, L.2    Li, M.3    Liu, Y.4    Ma, X.5
  • 66
    • 85014908663 scopus 로고    scopus 로고
    • Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers
    • Ma, L., Fu, T., Blaschke, T., Li, M., Tiede, D., Zhou, Z., Ma, X., & Chen, D., (2017a). Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers. ISPRS Int. J. Geo-Information, 6(2). doi: 10.3390/ijgi6020051
    • (2017) ISPRS Int. J. Geo-Information , pp. 6(2)
    • Ma, L.1    Fu, T.2    Blaschke, T.3    Li, M.4    Tiede, D.5    Zhou, Z.6    Ma, X.7    Chen, D.8
  • 67
    • 85021219961 scopus 로고    scopus 로고
    • A review of supervised object-based land-cover image classification
    • Ma, L., Li, M., Ma, X., Cheng, L., Du, P., & Liu, Y., (2017b). A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens, 130, 277–293. doi: 10.1016/j.isprsjprs.2017.06.001
    • (2017) ISPRS J. Photogramm. Remote Sens , vol.130 , pp. 277-293
    • Ma, L.1    Li, M.2    Ma, X.3    Cheng, L.4    Du, P.5    Liu, Y.6
  • 69
    • 85058371484 scopus 로고    scopus 로고
    • Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture
    • Maes, W. H., & Steppe, K., (2019). Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in Plant Science, 24 (2), 152–164. doi: 10.1016/J.TPLANTS.2018.11.007
    • (2019) Trends in Plant Science , vol.24 , Issue.2 , pp. 152-164
    • Maes, W.H.1    Steppe, K.2
  • 70
    • 85048716904 scopus 로고    scopus 로고
    • Implementation of machine-learning classification in remote sensing: an applied review
    • Maxwell, A. E., Warner, T. A., & Fang, F., (2018). Implementation of machine-learning classification in remote sensing: an applied review. Int. J. Remote Sens, 39 (9), 2784–2817. doi: 10.1080/01431161.2018.1433343
    • (2018) Int. J. Remote Sens , vol.39 , Issue.9 , pp. 2784-2817
    • Maxwell, A.E.1    Warner, T.A.2    Fang, F.3
  • 71
    • 0000596361 scopus 로고
    • Note on the sampling error of the difference between correlated proportions or percentages
    • McNemar, Q., (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12 (2), 153–157. doi: 10.1007/BF02295996
    • (1947) Psychometrika , vol.12 , Issue.2 , pp. 153-157
    • McNemar, Q.1
  • 73
    • 85092926343 scopus 로고    scopus 로고
    • Peña, J. M., Vizzari, M., & Modica, G. (,). A comparison of UAV and satellites multispectral imagery monitoring onion crop. an application the ‘Cipolla Rossa di Tropea’ (Italy)., Remote Sens, 12, (20), 3424
    • Messina, G., Peña, J. M., Vizzari, M., & Modica, G. (2020a). A comparison of UAV and satellites multispectral imagery in monitoring onion crop. an application in the ‘Cipolla Rossa di Tropea’ (Italy). Remote Sens, 12 (20), 3424. doi: 10.3390/rs12203424
    • (2020)
    • Messina, G.1
  • 74
    • 85083985825 scopus 로고    scopus 로고
    • Monitoring onion crops using UAV multispectral and thermal imagery: preliminary results
    • Messina, G., Praticò, S., Siciliani, B., Curcio, A., Di Fazio, S., & Modica, G. (2020b). Monitoring onion crops using UAV multispectral and thermal imagery: preliminary results. doi: 10.1007/978-3-030-39299-4_94
    • (2020)
    • Messina, G.1    Praticò, S.2    Siciliani, B.3    Curcio, A.4    Di Fazio, S.5    Modica, G.6
  • 75
    • 84906313654 scopus 로고    scopus 로고
    • Stable mean-shift algorithm and its application to the segmentation of arbitrarily large remote sensing images
    • Michel, J., Youssefi, D., & Grizonnet, M., (2015). Stable mean-shift algorithm and its application to the segmentation of arbitrarily large remote sensing images. IEEE, Trans. Geosci. Remote Sens, 53 (2), 952–964. doi: 10.1109/TGRS.2014.2330857
    • (2015) IEEE, Trans. Geosci. Remote Sens , vol.53 , Issue.2 , pp. 952-964
    • Michel, J.1    Youssefi, D.2    Grizonnet, M.3
  • 76
    • 84937918615 scopus 로고    scopus 로고
    • On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping
    • Millard, K., & Richardson, M. (2015). On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping. Remote Sensing, 7(7), 8489–8515. doi: 10.3390/rs70708489
    • (2015) Remote Sensing , vol.7 , Issue.7 , pp. 8489-8515
    • Millard, K.1    Richardson, M.2
  • 78
    • 84889597563 scopus 로고    scopus 로고
    • A framework for the geometric accuracy assessment of classified objects
    • Möller, M., Birger, J., Gidudu, A., & Gläßer, C., (2013). A framework for the geometric accuracy assessment of classified objects. International Journal of Remote Sensing, 34 (24), 8685–8698. doi: 10.1080/01431161.2013.845319
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.24 , pp. 8685-8698
    • Möller, M.1    Birger, J.2    Gidudu, A.3    Gläßer, C.4
  • 79
    • 79951950272 scopus 로고    scopus 로고
    • Support vector machines in remote sensing: A review
    • Mountrakis, G., Im, J., & Ogole, C., (2011). Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens, 66 (3), 247–259. doi: 10.1016/j.isprsjprs.2010.11.001
    • (2011) ISPRS J. Photogramm. Remote Sens , vol.66 , Issue.3 , pp. 247-259
    • Mountrakis, G.1    Im, J.2    Ogole, C.3
  • 80
    • 85058234347 scopus 로고    scopus 로고
    • Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery
    • Noi, P. T., & Kappas, M., (2018). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors (Switzerland), 18(2). doi: 10.3390/s18010018
    • (2018) Sensors (Switzerland) , pp. 18(2)
    • Noi, P.T.1    Kappas, M.2
  • 81
    • 84874666709 scopus 로고    scopus 로고
    • Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery
    • Ok, A. O., Senaras, C., & Yuksel, B., (2013). Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery. IEEE, Trans. Geosci. Remote Sens, 51 (3), 1701–1717. doi: 10.1109/TGRS.2012.2207123
    • (2013) IEEE, Trans. Geosci. Remote Sens , vol.51 , Issue.3 , pp. 1701-1717
    • Ok, A.O.1    Senaras, C.2    Yuksel, B.3
  • 82
    • 85063757727 scopus 로고    scopus 로고
    • Using aerial imagery and digital photography to monitor growth and yield in winter wheat
    • Olanrewaju, S., Rajan, N., Ibrahim, A. M. H., Rudd, J. C., Liu, S., Sui, R., Jessup, K. E., & Xue, Q., (2019). Using aerial imagery and digital photography to monitor growth and yield in winter wheat. Int. J. Remote Sens, 40 (18), 6905–6929. doi: 10.1080/01431161.2019.1597303
    • (2019) Int. J. Remote Sens , vol.40 , Issue.18 , pp. 6905-6929
    • Olanrewaju, S.1    Rajan, N.2    Ibrahim, A.M.H.3    Rudd, J.C.4    Liu, S.5    Sui, R.6    Jessup, K.E.7    Xue, Q.8
  • 83
    • 85014622104 scopus 로고    scopus 로고
    • UAS, sensors, and data processing in agroforestry: A review towards practical applications
    • Pádua, L., Vanko, J., Hruška, J., Adão, T., Sousa, J. J., Peres, E., & Morais, R., (2017). UAS, sensors, and data processing in agroforestry: A review towards practical applications. Int. J. Remote Sens, 38 (8–10), 2349–2391. doi: 10.1080/01431161.2017.1297548
    • (2017) Int. J. Remote Sens , vol.38 , Issue.8-10 , pp. 2349-2391
    • Pádua, L.1    Vanko, J.2    Hruška, J.3    Adão, T.4    Sousa, J.J.5    Peres, E.6    Morais, R.7
  • 84
    • 77953148490 scopus 로고    scopus 로고
    • Effects of water deficit on the vegetative response, yield and oil quality of olive trees (Olea europaea L., cv Coratina) grown under intensive cultivation
    • Palese, A. M., Nuzzo, V., Favati, F., Pietrafesa, A., Celano, G., & Xiloyannis, C., (2010). Effects of water deficit on the vegetative response, yield and oil quality of olive trees (Olea europaea L., cv Coratina) grown under intensive cultivation. Sci. Hortic. (Amsterdam), 125 (3), 222–229. doi: 10.1016/j.scienta.2010.03.025
    • (2010) Sci. Hortic. (Amsterdam) , vol.125 , Issue.3 , pp. 222-229
    • Palese, A.M.1    Nuzzo, V.2    Favati, F.3    Pietrafesa, A.4    Celano, G.5    Xiloyannis, C.6
  • 85
    • 85043535581 scopus 로고    scopus 로고
    • Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery
    • Pande-Chhetri, R., Abd-Elrahman, A., Liu, T., Morton, J., & Wilhelm, V. L., (2017). Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. Eur. J. Remote Sens, 50 (1), 564–576. doi: 10.1080/22797254.2017.1373602
    • (2017) Eur. J. Remote Sens , vol.50 , Issue.1 , pp. 564-576
    • Pande-Chhetri, R.1    Abd-Elrahman, A.2    Liu, T.3    Morton, J.4    Wilhelm, V.L.5
  • 86
    • 84983575848 scopus 로고    scopus 로고
    • Active learning system for weed species recognition based on hyperspectral sensing
    • 146, 193–202
    • Pantazi, X. E., Moshou, D., & Bravo, C., (2016). Active learning system for weed species recognition based on hyperspectral sensing. Biosyst. Eng. 146, 193–202. doi: 10.1016/j.biosystemseng.2016.01.014
    • (2016) Biosyst. Eng
    • Pantazi, X.E.1    Moshou, D.2    Bravo, C.3
  • 88
    • 84885398102 scopus 로고    scopus 로고
    • Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images
    • 8
    • Peña, J. M., Torres-Sánchez, J., De Castro, A. I., Kelly, M., & López-Granados, F., (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS One, 8 (10). doi: 10.1371/journal.pone.0077151
    • (2013) PLoS One
    • Peña, J.M.1    Torres-Sánchez, J.2    De Castro, A.I.3    Kelly, M.4    López-Granados, F.5
  • 89
    • 84928668178 scopus 로고    scopus 로고
    • Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution
    • Peña, J. M., Torres-Sánchez, J., Serrano-Pérez, A., De Castro, A. I., & López-Granados, F., (2015). Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors (Switzerland), 15 (3), 5609–5626. doi: 10.3390/s150305609
    • (2015) Sensors (Switzerland) , vol.15 , Issue.3 , pp. 5609-5626
    • Peña, J.M.1    Torres-Sánchez, J.2    Serrano-Pérez, A.3    De Castro, A.I.4    López-Granados, F.5
  • 93
    • 85100818706 scopus 로고    scopus 로고
    • Machine Learning Classification of Mediterranean Forest Habitats Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation., Remote Sensing, 13, (4), 586
    • Praticò, S., Solano, F., Di Fazio, S., & Modica, G. (2021). Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sensing, 13 (4), 586. doi: 10.3390/rs13040586
    • (2021)
    • Praticò, S.1    Solano, F.2    Di Fazio, S.3    Modica, G.4
  • 95
    • 85094170456 scopus 로고    scopus 로고
    • Chapter 10 - Vegetative growth
    • Woodhead Publishing, Woodhead Publishing, &,. (Ed.),. 193–217
    • Primo-Millo, E., & Agusti, M., (2020). Chapter 10 - Vegetative growth. In Woodhead Publishing (Ed.), The Genus Citrus. Woodhead Publishing. 193–217. https://doi.org/10.1016/B978-0-12-812163-4.00010-3.
    • (2020) The Genus Citrus
    • Primo-Millo, E.1    Agusti, M.2
  • 96
    • 85062823060 scopus 로고    scopus 로고
    • UAV for mapping shrubland vegetation: does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy?
    • Prošek, J., & Šímová, P., (2019). UAV for mapping shrubland vegetation: does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy?. Int. J. Appl. Earth Obs. Geoinf, 75, 151–162. doi: 10.1016/j.jag.2018.10.009
    • (2019) Int. J. Appl. Earth Obs. Geoinf , vol.75 , pp. 151-162
    • Prošek, J.1    Šímová, P.2
  • 97
    • 84920812571 scopus 로고    scopus 로고
    • Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery
    • Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L., (2015). Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens, 7 (1), 153–168. doi: 10.3390/rs70100153
    • (2015) Remote Sens , vol.7 , Issue.1 , pp. 153-168
    • Qian, Y.1    Zhou, W.2    Yan, J.3    Li, W.4    Han, L.5
  • 98
    • 85096495742 scopus 로고    scopus 로고
    • A novel image fusion method of multi-spectral and sar images for land cover classification
    • Quan, Y., Tong, Y., Feng, W., Dauphin, G., Huang, W., & Xing, M., (2020). A novel image fusion method of multi-spectral and sar images for land cover classification. Remote Sensing, 12 (22), 1–25. doi: 10.3390/rs12223801
    • (2020) Remote Sensing , vol.12 , Issue.22 , pp. 1-25
    • Quan, Y.1    Tong, Y.2    Feng, W.3    Dauphin, G.4    Huang, W.5    Xing, M.6
  • 100
    • 80052142987 scopus 로고    scopus 로고
    • Quality assessment of segmentation results devoted to object-based classification
    • Blaschke T., Lang S., Hay G.J., (eds), Springer Berlin Heidelberg, &,. Eds
    • Radoux, J., & Defourny, P., (2008). Quality assessment of segmentation results devoted to object-based classification. In T., Blaschke, S., Lang, & G.J., Hay Eds., Object-Based Image Analysis (pp. 257–271). Springer Berlin Heidelberg. http:// dx.doi.org/10.1007/978-3-540-77058-9_14.
    • (2008) Object-Based Image Analysis , pp. 257-271
    • Radoux, J.1    Defourny, P.2
  • 101
    • 85099883859 scopus 로고    scopus 로고
    • Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data
    • Ramezan, C. A., Warner, T. A., Maxwell, A. E., & Price, B. S., (2021). Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data. Remote Sens, 13 (3), 1–27. doi: 10.3390/rs13030368
    • (2021) Remote Sens , vol.13 , Issue.3 , pp. 1-27
    • Ramezan, C.A.1    Warner, T.A.2    Maxwell, A.E.3    Price, B.S.4
  • 102
    • 84930210544 scopus 로고    scopus 로고
    • Classification of contaminants from wheat using near-infrared hyperspectral imaging
    • 135,. 73–86
    • Ravikanth, L., Singh, C. B., Jayas, D. S., & White, N. D. G., (2015). Classification of contaminants from wheat using near-infrared hyperspectral imaging. Biosyst. Eng. 135. 73–86. doi: 10.1016/j.biosystemseng.2015.04.007
    • (2015) Biosyst. Eng
    • Ravikanth, L.1    Singh, C.B.2    Jayas, D.S.3    White, N.D.G.4
  • 103
    • 85058223118 scopus 로고    scopus 로고
    • Current and future applications of statistical machine learning algorithms for agricultural machine vision systems
    • Rehman, T. U., Mahmud, M. S., Chang, Y. K., Jin, J., & Shin, J., (2019). Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agric, 156, 585–605. doi: 10.1016/j.compag.2018.12.006
    • (2019) Comput. Electron. Agric , vol.156 , pp. 585-605
    • Rehman, T.U.1    Mahmud, M.S.2    Chang, Y.K.3    Jin, J.4    Shin, J.5
  • 105
    • 0002872223 scopus 로고
    • Monitoring vegetation systems in the great plains with ERTS (earth resources technology satellite)
    • In:, 1, 309–317. Washington
    • Rouse, J. W., Haas, R. H., Schell, J. A., & Deeering, D., (1973). Monitoring vegetation systems in the great plains with ERTS (earth resources technology satellite). In: Third earth resources technology satellite-1 symposium. 1, 309–317. Washington.
    • (1973) Third earth resources technology satellite-1 symposium
    • Rouse, J.W.1    Haas, R.H.2    Schell, J.A.3    Deeering, D.4
  • 106
    • 85044288673 scopus 로고    scopus 로고
    • Aerial mapping of forests affected by pathogens using UAVs, hyperspectral sensors, and artificial intelligence
    • Sandino, J., Pegg, G., Gonzalez, F., & Smith, G., (2018). Aerial mapping of forests affected by pathogens using UAVs, hyperspectral sensors, and artificial intelligence. Sensors, 18 (4), 944. doi: 10.3390/s18040944
    • (2018) Sensors , vol.18 , Issue.4 , pp. 944
    • Sandino, J.1    Pegg, G.2    Gonzalez, F.3    Smith, G.4
  • 107
    • 85018465528 scopus 로고    scopus 로고
    • Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery
    • Schirrmann, M., Giebel, A., Gleiniger, F., Pflanz, M., Lentschke, J., & Dammer, K. H., (2016). Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery. Remote Sens, 8(9). doi; 10.3390/rs8090706
    • (2016) Remote Sens , pp. 8(9)
    • Schirrmann, M.1    Giebel, A.2    Gleiniger, F.3    Pflanz, M.4    Lentschke, J.5    Dammer, K.H.6
  • 110
    • 85068119513 scopus 로고    scopus 로고
    • Operational large-scale segmentation of imagery based on iterative elimination
    • Shepherd, J., Bunting, P., & Dymond, J., (2019). Operational large-scale segmentation of imagery based on iterative elimination. Remote Sens, 11 (6), 658. doi: 10.3390/rs11060658
    • (2019) Remote Sens , vol.11 , Issue.6 , pp. 658
    • Shepherd, J.1    Bunting, P.2    Dymond, J.3
  • 111
    • 0032630347 scopus 로고    scopus 로고
    • Performance evaluation and analysis of monocular building extraction from aerial imagery
    • Shufelt, J. A., (1999). Performance evaluation and analysis of monocular building extraction from aerial imagery. IEEE, Trans. Pattern Anal. Mach. Intell, 21 (4), 311–326. doi: 10.1109/34.761262
    • (1999) IEEE, Trans. Pattern Anal. Mach. Intell , vol.21 , Issue.4 , pp. 311-326
    • Shufelt, J.A.1
  • 113
    • 65649138430 scopus 로고    scopus 로고
    • A systematic analysis of performance measures for classification tasks
    • Sokolova, M., & Lapalme, G., (2009). A systematic analysis of performance measures for classification tasks. Inf. Process. Manag, 45 (4), 427–437. doi: 10.1016/j.ipm.2009.03.002
    • (2009) Inf. Process. Manag , vol.45 , Issue.4 , pp. 427-437
    • Sokolova, M.1    Lapalme, G.2
  • 114
    • 85077303511 scopus 로고    scopus 로고
    • A methodology based on GEOBIA and worldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards
    • Solano, F., Di Fazio, S., & Modica, G., (2019). A methodology based on GEOBIA and worldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards. Int. J. Appl. Earth Obs. Geoinf, 83, 101912. doi: 10.1016/j.jag.2019.101912
    • (2019) Int. J. Appl. Earth Obs. Geoinf , vol.83 , pp. 101912
    • Solano, F.1    Di Fazio, S.2    Modica, G.3
  • 115
    • 85021105660 scopus 로고    scopus 로고
    • Local and global evaluation for remote sensing image segmentation
    • Su, T., & Zhang, S., (2017). Local and global evaluation for remote sensing image segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 256–276. doi: 10.1016/j.isprsjprs.2017.06.003
    • (2017) ISPRS Journal of Photogrammetry and Remote Sensing , vol.130 , pp. 256-276
    • Su, T.1    Zhang, S.2
  • 116
    • 85051632898 scopus 로고    scopus 로고
    • Optimizing kNN for mapping vegetation cover of arid and semi-arid areas using landsat images
    • Sun, H., Wang, Q., Wang, G., Lin, H., Luo, P., Li, J., Zeng, S., Xu, X., & Ren, L., (2018). Optimizing kNN for mapping vegetation cover of arid and semi-arid areas using landsat images. Remote Sens, 10(8). doi: 10.3390/rs10081248
    • (2018) Remote Sens , pp. 10(8)
    • Sun, H.1    Wang, Q.2    Wang, G.3    Lin, H.4    Luo, P.5    Li, J.6    Zeng, S.7    Xu, X.8    Ren, L.9
  • 117
    • 85070686621 scopus 로고    scopus 로고
    • Identifying terraces in the hilly and gully regions of the loess plateau in China
    • Sun, W., Zhang, Y., Mu, X., Li, J., Gao, P., Zhao, G., Dang, T., & Chiew, F., (2019). Identifying terraces in the hilly and gully regions of the loess plateau in China. L. Degrad. Dev, 30 (17), 2126–2138. doi: 10.1002/ldr.3405
    • (2019) L. Degrad. Dev , vol.30 , Issue.17 , pp. 2126-2138
    • Sun, W.1    Zhang, Y.2    Mu, X.3    Li, J.4    Gao, P.5    Zhao, G.6    Dang, T.7    Chiew, F.8
  • 118
    • 84959230953 scopus 로고    scopus 로고
    • Comparison of performance of object-based image analysis techniques available in open source software (spring and orfeo toolbox/monteverdi) considering very high spatial resolution data
    • Teodoro, A. C., & Araujo, R., (2016). Comparison of performance of object-based image analysis techniques available in open source software (spring and orfeo toolbox/monteverdi) considering very high spatial resolution data. J. Appl. Remote Sens, 10 (1), 016011. doi: 10.1117/1.JRS.10.016011
    • (2016) J. Appl. Remote Sens , vol.10 , Issue.1 , pp. 016011
    • Teodoro, A.C.1    Araujo, R.2
  • 119
    • 3042661357 scopus 로고    scopus 로고
    • Thematic Map Comparison: Evaluating the Statistical Significance ofDifferences in Classification Accuracy
    • Foody, G. M. (2004). Thematic Map Comparison: Evaluating the Statistical Significance ofDifferences in Classification Accuracy. Photogrammetric Engineering & Remote Sensing, 70(5), 627–633. https://doi.org/10.14358/PERS.70.5.627
    • (2004) Photogrammetric Engineering & Remote Sensing , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1
  • 120
    • 84874595926 scopus 로고    scopus 로고
    • Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management
    • Torres-Sánchez, J., López-Granados, F., De Castro, A. I., & Peña-Barragán, J. M., (2013). Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PLoS One, 8(3). doi: 10.1371/journal.pone.0058210
    • (2013) PLoS One , pp. 8(3)
    • Torres-Sánchez, J.1    López-Granados, F.2    De Castro, A.I.3    Peña-Barragán, J.M.4
  • 121
    • 84926633657 scopus 로고    scopus 로고
    • An automatic object-based method for optimal thresholding in UAV images: application for vegetation detection in herbaceous crops
    • Torres-Sánchez, J., López-Granados, F., & Peña, J. M., (2015a). An automatic object-based method for optimal thresholding in UAV images: application for vegetation detection in herbaceous crops. Comput. Electron. Agric, 114, 43–52. doi: 10.1016/j.compag.2015.03.019
    • (2015) Comput. Electron. Agric , vol.114 , pp. 43-52
    • Torres-Sánchez, J.1    López-Granados, F.2    Peña, J.M.3
  • 122
    • 84896137428 scopus 로고    scopus 로고
    • Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV
    • Torres-Sánchez, J., Peña, J. M., De Castro, A. I., & López-Granados, F., (2014). Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric, 103, 104–113. doi: 10.1016/j.compag.2014.02.009
    • (2014) Comput. Electron. Agric , vol.103 , pp. 104-113
    • Torres-Sánchez, J.1    Peña, J.M.2    De Castro, A.I.3    López-Granados, F.4
  • 124
    • 85075717968 scopus 로고    scopus 로고
    • A review on UAV-based applications for precision agriculture
    • Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G., (2019). A review on UAV-based applications for precision agriculture. Inf, 10(11). doi: 10.3390/info10110349
    • (2019) Inf , pp. 10(11)
    • Tsouros, D.C.1    Bibi, S.2    Sarigiannidis, P.G.3
  • 128
    • 85077769097 scopus 로고    scopus 로고
    • Fine scale plant community assessment in coastal meadows using UAV based multispectral data
    • Villoslada, M., Bergamo, T. F., Ward, R. D., Burnside, N. G., Joyce, C. B., Bunce, R. G. H., & Sepp, K., (2020). Fine scale plant community assessment in coastal meadows using UAV based multispectral data. Ecol. Indic, 111, 105979. doi: 10.1016/j.ecolind.2019.105979
    • (2020) Ecol. Indic , vol.111 , pp. 105979
    • Villoslada, M.1    Bergamo, T.F.2    Ward, R.D.3    Burnside, N.G.4    Joyce, C.B.5    Bunce, R.G.H.6    Sepp, K.7
  • 129
    • 10844220846 scopus 로고    scopus 로고
    • Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery
    • Wang, L., Sousa, W. P., & Gong, P., (2004). Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing, 25 (24), 5655–5668. doi: 10.1080/014311602331291215
    • (2004) International Journal of Remote Sensing , vol.25 , Issue.24 , pp. 5655-5668
    • Wang, L.1    Sousa, W.P.2    Gong, P.3
  • 130
    • 77957752577 scopus 로고    scopus 로고
    • Environmental modelling & software an automatic region-based image segmentation algorithm for remote sensing applications
    • Wang, Z., Jensen, J. R., & Im, J., (2010). Environmental modelling & software an automatic region-based image segmentation algorithm for remote sensing applications. Environ. Model. Softw, 25 (10), 1149–1165. doi: 10.1016/j.envsoft.2010.03.019
    • (2010) Environ. Model. Softw , vol.25 , Issue.10 , pp. 1149-1165
    • Wang, Z.1    Jensen, J.R.2    Im, J.3
  • 131
    • 84896962668 scopus 로고    scopus 로고
    • Optimizing multi-resolution segmentation scale using empirical methods: exploring the sensitivity of the supervised discrepancy measure euclidean distance 2 (ED2)
    • Witharana, C., & Civco, D. L., (2014). Optimizing multi-resolution segmentation scale using empirical methods: exploring the sensitivity of the supervised discrepancy measure euclidean distance 2 (ED2). ISPRS J. Photogramm. Remote Sens, 87, 108–121. doi: 10.1016/j.isprsjprs.2013.11.006
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.87 , pp. 108-121
    • Witharana, C.1    Civco, D.L.2
  • 132
    • 84929295817 scopus 로고    scopus 로고
    • An object-based SVM method incorporating optimal segmentation scale estimation using bhattacharyya distance for mapping salt cedar (Tamarisk spp.) with quickBird imagery
    • Xun, L., & Wang, L., (2015). An object-based SVM method incorporating optimal segmentation scale estimation using bhattacharyya distance for mapping salt cedar (Tamarisk spp.) with quickBird imagery. GIScience and Remote Sensing, 52 (3), 257–273. doi: 10.1080/15481603.2015.1026049
    • (2015) GIScience and Remote Sensing , vol.52 , Issue.3 , pp. 257-273
    • Xun, L.1    Wang, L.2
  • 133
    • 85062976622 scopus 로고    scopus 로고
    • Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery
    • Yang, L., Mansaray, L. R., Huang, J., & Wang, L., (2019). Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery. Remote Sens, 11(5). doi: 10.3390/rs11050514
    • (2019) Remote Sens , pp. 11(5)
    • Yang, L.1    Mansaray, L.R.2    Huang, J.3    Wang, L.4
  • 134
    • 85046801430 scopus 로고    scopus 로고
    • A review of accuracy assessment for object-based image analysis: from per-pixel to per-polygon approaches
    • Elsevier B.V
    • Ye, S., Pontius, R. G., & Rakshit, R., (2018). A review of accuracy assessment for object-based image analysis: from per-pixel to per-polygon approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 141 (July), 137–147. Elsevier B.V. doi: 10.1016/j.isprsjprs.2018.04.002
    • (2018) ISPRS Journal of Photogrammetry and Remote Sensing , vol.141 , Issue.July , pp. 137-147
    • Ye, S.1    Pontius, R.G.2    Rakshit, R.3
  • 135
    • 84868629775 scopus 로고    scopus 로고
    • The application of small unmanned aerial systems for precision agriculture: A review
    • Zhang, C., & Kovacs, J. M., (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric, 13 (6), 693–712. doi: 10.1007/s11119-012-9274-5
    • (2012) Precis. Agric , vol.13 , Issue.6 , pp. 693-712
    • Zhang, C.1    Kovacs, J.M.2
  • 136
    • 84902481208 scopus 로고    scopus 로고
    • Object-based vegetation mapping in the kissimmee river watershed using hymap data and machine learning techniques
    • Zhang, C., & Xie, Z., (2013). Object-based vegetation mapping in the kissimmee river watershed using hymap data and machine learning techniques. Wetlands, 33 (2), 233–244. doi: 10.1007/s13157-012-0373-x
    • (2013) Wetlands , vol.33 , Issue.2 , pp. 233-244
    • Zhang, C.1    Xie, Z.2
  • 137
    • 84922378744 scopus 로고    scopus 로고
    • Segmentation quality evaluation using region-based precision and recall measures for remote sensing images
    • Zhang, X., Feng, X., Xiao, P., He, G., & Zhu, L., (2015). Segmentation quality evaluation using region-based precision and recall measures for remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 102, 73–84. doi: 10.1016/j.isprsjprs.2015.01.009
    • (2015) ISPRS Journal of Photogrammetry and Remote Sensing , vol.102 , pp. 73-84
    • Zhang, X.1    Feng, X.2    Xiao, P.3    He, G.4    Zhu, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.