-
1
-
-
85067414830
-
UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning
-
Abdulridha, J., Batuman, O., & Ampatzidis, Y., (2019a). UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sens, 11 (11), 1373. doi: 10.3390/rs11111373
-
(2019)
Remote Sens
, vol.11
, Issue.11
, pp. 1373
-
-
Abdulridha, J.1
Batuman, O.2
Ampatzidis, Y.3
-
2
-
-
85058235908
-
A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses
-
Abdulridha, J., Ehsani, R., Abd-Elrahman, A., & Ampatzidis, Y., (2019b). A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses. Comput. Electron. Agric, 156, 549–557. doi: 10.1016/j.compag.2018.12.018
-
(2019)
Comput. Electron. Agric
, vol.156
, pp. 549-557
-
-
Abdulridha, J.1
Ehsani, R.2
Abd-Elrahman, A.3
Ampatzidis, Y.4
-
3
-
-
85111407058
-
Assessment of multiresolution segmentation for extracting greenhouses from worldView-2 imagery
-
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., 41, 145–152, Altman, N.S., 1992. An introduction to kernel and nearest-neighbor nonparametric regression
-
Aguilar, M. A., Aguilar, F. J., García Lorca, A., Guirado, E., Betlej, M., Cichon, P., Nemmaoui, A., Vallario, A., & Parente, C., (2016). Assessment of multiresolution segmentation for extracting greenhouses from worldView-2 imagery. Am. Stat, 46, 175–185. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., 41, 145–152. https://doi.org/10.5194/isprs-archives-XLI-B7-145-2016. Altman, N.S., 1992. An introduction to kernel and nearest-neighbor nonparametric regression. doi: 10.1080/00031305.1992.10475879.
-
(2016)
Am. Stat
, vol.46
, pp. 175-185
-
-
Aguilar, M.A.1
Aguilar, F.J.2
García Lorca, A.3
Guirado, E.4
Betlej, M.5
Cichon, P.6
Nemmaoui, A.7
Vallario, A.8
Parente, C.9
-
5
-
-
33747139337
-
On scales and dynamics in observing the environment
-
Aplin, P., (2006). On scales and dynamics in observing the environment. Int. J. Remote Sens, 27 (11), 2123–2140. doi: 10.1080/01431160500396477
-
(2006)
Int. J. Remote Sens
, vol.27
, Issue.11
, pp. 2123-2140
-
-
Aplin, P.1
-
6
-
-
0001812168
-
Multiresolution segmentation - An optimization approach for high quality multi-scale image segmentation
-
Strobl J., Blaschke T., Griesbner G., (eds), Wichmann Verlag, &,. (Eds
-
Baatz, M., & Schape, A., (2000). Multiresolution segmentation - An optimization approach for high quality multi-scale image segmentation. In J., Strobl, T., Blaschke, & G., Griesbner (Eds.), Angewandte Geographische Informations-Verarbeitung (Vol. XII, pp. 12–23). Wichmann Verlag.
-
(2000)
Angewandte Geographische Informations-Verarbeitung
, vol.12
, pp. 12-23
-
-
Baatz, M.1
Schape, A.2
-
7
-
-
85033436404
-
-
Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis., Remote Sensing of Environment, 204(September
-
Belgiu, M., & Csillik, O., (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204(September), 509–523. https://doi.org/10.1016/j.rse.2017.10.005
-
(2018)
, pp. 509-523
-
-
Belgiu, M.1
Csillik, O.2
-
8
-
-
84904909081
-
Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery
-
Belgiu, M., & Drǎguţ, L., (2014). Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 96, 67–75. doi: 10.1016/j.isprsjprs.2014.07.002
-
(2014)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.96
, pp. 67-75
-
-
Belgiu, M.1
Drǎguţ, L.2
-
9
-
-
84961834117
-
Random forest in remote sensing: A review of applications and future directions
-
Belgiu, M., & Drăguţ, L., (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens, 114, 24–31. doi: 10.1016/j.isprsjprs.2016.01.011
-
(2016)
ISPRS J. Photogramm. Remote Sens
, vol.114
, pp. 24-31
-
-
Belgiu, M.1
Drăguţ, L.2
-
10
-
-
0002215069
-
On a measure of divergence between two statistical populations defined by their probability distributions
-
Bhattacharyya, A., (1943). On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc, 35, 99–109.
-
(1943)
Bull. Calcutta Math. Soc
, vol.35
, pp. 99-109
-
-
Bhattacharyya, A.1
-
11
-
-
73249139477
-
Object based image analysis for remote sensing
-
Blaschke, T., (2010). Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens, 65 (1), 2–16. doi: 10.1016/j.isprsjprs.2009.06.004
-
(2010)
ISPRS J. Photogramm. Remote Sens
, vol.65
, Issue.1
, pp. 2-16
-
-
Blaschke, T.1
-
12
-
-
84890209110
-
Geographic object-based image analysis–towards a new paradigm
-
Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., Van Der Werff, H., van Coillie, F., & Tiede, D., (2014). Geographic object-based image analysis–towards a new paradigm. ISPRS J. Photogramm. Remote Sens, 87, 180–191. doi: 10.1016/j.isprsjprs.2013.09.014
-
(2014)
ISPRS J. Photogramm. Remote Sens
, vol.87
, pp. 180-191
-
-
Blaschke, T.1
Hay, G.J.2
Kelly, M.3
Lang, S.4
Hofmann, P.5
Addink, E.6
Queiroz Feitosa, R.7
van der Meer, F.8
Van Der Werff, H.9
van Coillie, F.10
Tiede, D.11
-
14
-
-
0035478854
-
Random forests
-
Breiman, L., (2001). Random forests. Mach. Learn, 45 (1), 5–32. doi: 10.1023/A:1010933404324
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
15
-
-
85042533773
-
Estimating barley biomass with crop surface models from oblique RGB imagery
-
Brocks, S., & Bareth, G., (2018). Estimating barley biomass with crop surface models from oblique RGB imagery. Remote Sens, 10(2). doi: 10.3390/rs10020268
-
(2018)
Remote Sens
, pp. 10(2)
-
-
Brocks, S.1
Bareth, G.2
-
16
-
-
84887828475
-
The remote sensing and GIS software library (RSGISLib)
-
Bunting, P., Clewley, D., Lucas, R. M., & Gillingham, S., (2014). The remote sensing and GIS software library (RSGISLib). Comput. Geosci, 62, 216–226. doi: 10.1016/j.cageo.2013.08.007
-
(2014)
Comput. Geosci
, vol.62
, pp. 216-226
-
-
Bunting, P.1
Clewley, D.2
Lucas, R.M.3
Gillingham, S.4
-
17
-
-
84937860942
-
Evaluating multispectral images and vegetation indices for precision farming applications from UAV images
-
Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M., (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens, 7 (4), 4026–4047. doi: 10.3390/rs70404026
-
(2015)
Remote Sens
, vol.7
, Issue.4
, pp. 4026-4047
-
-
Candiago, S.1
Remondino, F.2
De Giglio, M.3
Dubbini, M.4
Gattelli, M.5
-
18
-
-
84904466762
-
A python-based open source system for geographic object-based image analysis (GEOBIA) utilizing raster attribute tables
-
Clewley, D., Bunting, P., Shepherd, J., Gillingham, S., Flood, N., Dymond, J., Lucas, R., Armston, J., & Moghaddam, M., (2014). A python-based open source system for geographic object-based image analysis (GEOBIA) utilizing raster attribute tables. Remote Sens, 6 (7), 6111–6135. doi: 10.3390/rs6076111
-
(2014)
Remote Sens
, vol.6
, Issue.7
, pp. 6111-6135
-
-
Clewley, D.1
Bunting, P.2
Shepherd, J.3
Gillingham, S.4
Flood, N.5
Dymond, J.6
Lucas, R.7
Armston, J.8
Moghaddam, M.9
-
19
-
-
77949838817
-
Accuracy assessment measures for object-based image segmentation goodness
-
Clinton, N., Holt, A., Scarborough, J., Yan, L. I., & Gong, P., (2010). Accuracy assessment measures for object-based image segmentation goodness. Photogrammetric Engineering and Remote Sensing, 76 (3), 289–299. doi: 10.14358/PERS.76.3.289
-
(2010)
Photogrammetric Engineering and Remote Sensing
, vol.76
, Issue.3
, pp. 289-299
-
-
Clinton, N.1
Holt, A.2
Scarborough, J.3
Yan, L.I.4
Gong, P.5
-
21
-
-
84865124691
-
The physiology of adaptation and yield expression in Olive
-
31, (4
-
Connor, D. J., & Fereres, E., (2010). The physiology of adaptation and yield expression in Olive. Horticultural Reviews, 31 (4). doi: 10.1002/9780470650882.ch4
-
(2010)
Horticultural Reviews
-
-
Connor, D.J.1
Fereres, E.2
-
22
-
-
34249753618
-
Support-vector networks editor
-
Cortes, C., & Vapnik, V., (1995). Support-vector networks editor. Mach. Learn, 20 (3), 273–297. doi: 10.1023/A:1022627411411
-
(1995)
Mach. Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
23
-
-
85037527926
-
Supervised methods of image segmentation accuracy assessment in land cover mapping
-
Costa, H., Foody, G. M., & Boyd, D. S., (2018). Supervised methods of image segmentation accuracy assessment in land cover mapping. Remote Sensing of Environment, 205, 338–351. doi: 10.1016/j.rse.2017.11.024
-
(2018)
Remote Sensing of Environment
, vol.205
, pp. 338-351
-
-
Costa, H.1
Foody, G.M.2
Boyd, D.S.3
-
24
-
-
85085559239
-
Discrimination of species composition types of a grazed pasture landscape using sentinel-1 and sentinel-2 data
-
Crabbe, R. A., Lamb, D., & Edwards, C., (2020). Discrimination of species composition types of a grazed pasture landscape using sentinel-1 and sentinel-2 data. International Journal of Applied Earth Observation and Geoinformation, 84, 101978. doi: 10.1016/j.jag.2019.101978
-
(2020)
International Journal of Applied Earth Observation and Geoinformation
, vol.84
, pp. 101978
-
-
Crabbe, R.A.1
Lamb, D.2
Edwards, C.3
-
25
-
-
85060702279
-
Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks
-
Csillik, O., Cherbini, J., Johnson, R., Lyons, A., & Kelly, M., (2018). Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks. Drones, 2 (4), 39. doi: 10.3390/drones2040039
-
(2018)
Drones
, vol.2
, Issue.4
, pp. 39
-
-
Csillik, O.1
Cherbini, J.2
Johnson, R.3
Lyons, A.4
Kelly, M.5
-
26
-
-
38449114584
-
Random forests for classification in ecology
-
Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J., (2007). Random forests for classification in ecology. Ecology, 88 (11), 2783–2792. doi: 10.1890/07-0539.1
-
(2007)
Ecology
, vol.88
, Issue.11
, pp. 2783-2792
-
-
Cutler, D.R.1
Edwards, T.C.2
Beard, K.H.3
Cutler, A.4
Hess, K.T.5
Gibson, J.6
Lawler, J.J.7
-
27
-
-
85042537525
-
An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery
-
De Castro, A. I., Torres-Sánchez, J., Peña, J. M., Jiménez-Brenes, F. M., Csillik, O., & López-Granados, F., (2018). An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sens, 10 (3), 1–21. doi: 10.3390/rs10020285
-
(2018)
Remote Sens
, vol.10
, Issue.3
, pp. 1-21
-
-
De Castro, A.I.1
Torres-Sánchez, J.2
Peña, J.M.3
Jiménez-Brenes, F.M.4
Csillik, O.5
López-Granados, F.6
-
28
-
-
85066755628
-
Object-based land cover classification of cork oak woodlands using UAV imagery and orfeo toolBox
-
De Luca, G. N., Silva, J. M., Cerasoli, S., Araújo, J., Campos, J., Di Fazio, S., & Modica, G., (2019). Object-based land cover classification of cork oak woodlands using UAV imagery and orfeo toolBox. Remote Sens, 11 (10), 1238. doi: 10.3390/rs11101238
-
(2019)
Remote Sens
, vol.11
, Issue.10
, pp. 1238
-
-
De Luca, G.N.1
Silva, J.M.2
Cerasoli, S.3
Araújo, J.4
Campos, J.5
Di Fazio, S.6
Modica, G.7
-
29
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
Dietterich, T., (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computat, 10 (7), 1895–1923. doi: 10.1162/089976698300017197
-
(1998)
Neural Computat
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.1
-
30
-
-
85034069279
-
Weed detection in soybean crops using convNets
-
143, 314–324
-
Dos Santos Ferreira, A., Matte Freitas, D., Gonçalves da Silva, G., Pistori, H., & Theophilo Folhes, M., (2017). Weed detection in soybean crops using convNets. Comput. Electron. Agric. 143, 314–324. doi: 10.1016/j.compag.2017.10.027
-
(2017)
Comput. Electron. Agric
-
-
Dos Santos Ferreira, A.1
Matte Freitas, D.2
Gonçalves da Silva, G.3
Pistori, H.4
Theophilo Folhes, M.5
-
31
-
-
84891136260
-
Automated parameterisation for multi-scale image segmentation on multiple layers
-
Drǎguţ, L., Csillik, O., Eisank, C., & Tiede, D., (2014). Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens, 88, 119–127. doi: 10.1016/j.isprsjprs.2013.11.018
-
(2014)
ISPRS J. Photogramm. Remote Sens
, vol.88
, pp. 119-127
-
-
Drǎguţ, L.1
Csillik, O.2
Eisank, C.3
Tiede, D.4
-
32
-
-
85011273268
-
Windthrow detection in European forests with very high-resolution optical data
-
Einzmann, K., Atzberger, C., Schmitt, A., Bauer, O., Böck, S., Immitzer, M., Immitzer, M., Böck, S., Bauer, O., Schmitt, A., Atzberger, C., Einzmann, K., Atzberger, C., Schmitt, A., Bauer, O., Böck, S., & Immitzer, M. (2017). Windthrow detection in European forests with very high-resolution optical data. Forests, 8 (1), 21. doi: 10.3390/f8010021
-
(2017)
Forests
, vol.8
, Issue.1
, pp. 21
-
-
Einzmann, K.1
Atzberger, C.2
Schmitt, A.3
Bauer, O.4
Böck, S.5
Immitzer, M.6
Immitzer, M.7
Böck, S.8
Bauer, O.9
Schmitt, A.10
Atzberger, C.11
Einzmann, K.12
Atzberger, C.13
Schmitt, A.14
Bauer, O.15
Böck, S.16
Immitzer, M.17
-
33
-
-
85081018738
-
Towards weeds identification assistance through transfer learning
-
171
-
Espejo-Garcia, B., Mylonas, N., Athanasakos, L., Fountas, S., & Vasilakoglou, I., (2020). Towards weeds identification assistance through transfer learning. Comput. Electron. Agric, 171. doi: 10.1016/j.compag.2020.105306
-
(2020)
Comput. Electron. Agric
-
-
Espejo-Garcia, B.1
Mylonas, N.2
Athanasakos, L.3
Fountas, S.4
Vasilakoglou, I.5
-
35
-
-
0016509650
-
The estimation of the gradient of a density function, with applications in pattern recognition
-
21,), 32– 40
-
Fukunaga, K., & Hostetler, L. D., (1975). The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, 21 (1), 32– 40. doi: 10.1109/TIT.1975.1055330
-
(1975)
IEEE Transactions on Information Theory
-
-
Fukunaga, K.1
Hostetler, L.D.2
-
36
-
-
85044608891
-
Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery
-
67, 43–53
-
Gao, J., Liao, W., Nuyttens, D., Lootens, P., Vangeyte, J., Pižurica, A., He, Y., & Pieters, J. G., (2018). Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. Int. J. Appl. Earth Obs. Geoinf. 67, 43–53. doi: 10.1016/j.jag.2017.12.012
-
(2018)
Int. J. Appl. Earth Obs. Geoinf
-
-
Gao, J.1
Liao, W.2
Nuyttens, D.3
Lootens, P.4
Vangeyte, J.5
Pižurica, A.6
He, Y.7
Pieters, J.G.8
-
37
-
-
79960048515
-
Optimal region growing segmentation and its effect on classification accuracy
-
Gao, Y., Mas, J. F., Kerle, N., & Navarrete Pacheco, J. A., (2011)). Optimal region growing segmentation and its effect on classification accuracy. Int. J. Remote Sens, 2011 (13), 3747–3763. doi: 10.1080/01431161003777189
-
(2011)
Int. J. Remote Sens
, vol.2011
, Issue.13
, pp. 3747-3763
-
-
Gao, Y.1
Mas, J.F.2
Kerle, N.3
Navarrete Pacheco, J.A.4
-
38
-
-
85082658867
-
An automatic method for weed mapping in oat fields based on UAV imagery
-
Gašparović, M., Zrinjski, M., Barković, Đ., & Radočaj, D., (2020). An automatic method for weed mapping in oat fields based on UAV imagery. Comput. Electron. Agric, 173, 105385. doi: 10.1016/j.compag.2020.105385
-
(2020)
Comput. Electron. Agric
, vol.173
, pp. 105385
-
-
Gašparović, M.1
Zrinjski, M.2
Barković, Đ.3
Radočaj, D.4
-
39
-
-
85042302217
-
UAVs and machine learning revolutionising invasive grass and vegetation surveys in remote arid lands
-
Gaston, K. J., Gaston, K. J., Mengersen, K., Gonzalez, F., Sandino, J., Gonzalez, F., Mengersen, K., Gaston, K. J., Gaston, K. J., Mengersen, K., Gonzalez, F., & Sandino, J. (2018). UAVs and machine learning revolutionising invasive grass and vegetation surveys in remote arid lands. Sensors, 18 (2), 605. doi: 10.3390/s18020605
-
(2018)
Sensors
, vol.18
, Issue.2
, pp. 605
-
-
Gaston, K.J.1
Gaston, K.J.2
Mengersen, K.3
Gonzalez, F.4
Sandino, J.5
Gonzalez, F.6
Mengersen, K.7
Gaston, K.J.8
Gaston, K.J.9
Mengersen, K.10
Gonzalez, F.11
Sandino, J.12
-
40
-
-
85035758443
-
Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application
-
55,), 221–242
-
Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Kalogirou, S., & Wolff, E., (2018). Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GIScience Remote Sens, 55 (2), 221–242. doi: 10.1080/15481603.2017.1408892
-
(2018)
GIScience Remote Sens
-
-
Georganos, S.1
Grippa, T.2
Vanhuysse, S.3
Lennert, M.4
Shimoni, M.5
Kalogirou, S.6
Wolff, E.7
-
41
-
-
0030453414
-
Use of a green channel in remote sensing of global vegetation from EOS- MODIS
-
Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N., (1996). Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sens. Environ, 58 (3), 289–298. doi: 10.1016/S0034-4257(96)00072-7
-
(1996)
Remote Sens. Environ
, vol.58
, Issue.3
, pp. 289-298
-
-
Gitelson, A.A.1
Kaufman, Y.J.2
Merzlyak, M.N.3
-
42
-
-
0032444460
-
Remote sensing of chlorophyll concentration in higher plant leaves
-
Gitelson, A. A., & Merzlyak, M. N., (1998). Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Sp. Res, 22 (5), 689–692. doi: 10.1016/S0273-1177(97)01133-2
-
(1998)
Adv. Sp. Res
, vol.22
, Issue.5
, pp. 689-692
-
-
Gitelson, A.A.1
Merzlyak, M.N.2
-
44
-
-
24644443221
-
A probabilistic interpretation of precision, recall and F-score, with implication for evaluation
-
Goutte, C., & Gaussier, E., (2005). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. Lect. Notes Comput. Sci, 3408, 345–359. doi: 10.1007/978-3-540-31865-1_25
-
(2005)
Lect. Notes Comput. Sci
, vol.3408
, pp. 345-359
-
-
Goutte, C.1
Gaussier, E.2
-
45
-
-
85061452265
-
-
Integrating GEOBIA, Machine Learning, and Volunteered Geographic Information to Map Vegetation over Rooftops., ISPRS International Journal of Geo-Information, 7, (12), 462
-
Griffith, D., & Hay, G. (2018). Integrating GEOBIA, Machine Learning, and Volunteered Geographic Information to Map Vegetation over Rooftops. ISPRS International Journal of Geo-Information, 7 (12), 462. doi: 10.3390/ijgi7120462
-
(2018)
-
-
Griffith, D.1
Hay, G.2
-
46
-
-
85061991968
-
Machine learning made easy: A review of scikit-learn package in python programming language
-
Hao, J., & Ho, T. K., (2019). Machine learning made easy: A review of scikit-learn package in python programming language. J. Educ. Behav. Stat, 44 (3), 348–361. doi: 10.3102/1076998619832248
-
(2019)
J. Educ. Behav. Stat
, vol.44
, Issue.3
, pp. 348-361
-
-
Hao, J.1
Ho, T.K.2
-
47
-
-
67651084257
-
Object-based image analysis: strengths, weaknesses, opportunities and threats (SWOT), in: the international archives of the photogrammetry
-
Hay, G. J., & Castilla, G., (2006). Object-based image analysis: strengths, weaknesses, opportunities and threats (SWOT), in: the international archives of the photogrammetry. Remote Sensing and Spatial Information Sciences, 4–5. https://www.isprs.org/proceedings/XXXVI/4-C42/Papers/01_Opening%20Session/OBIA2006_Hay_Castilla.pdf
-
(2006)
Remote Sensing and Spatial Information Sciences
, pp. 4-5
-
-
Hay, G.J.1
Castilla, G.2
-
48
-
-
82155168615
-
Quantifying the robustness of fuzzy rule sets in object-based image analysis
-
Hofmann, P., Blaschke, T., & Strobl, J., (2011). Quantifying the robustness of fuzzy rule sets in object-based image analysis. Int. J. Remote Sens, 32 (22), 7359–7381. doi: 10.1080/01431161.2010.523727
-
(2011)
Int. J. Remote Sens
, vol.32
, Issue.22
, pp. 7359-7381
-
-
Hofmann, P.1
Blaschke, T.2
Strobl, J.3
-
49
-
-
85061903227
-
Segmentation for object-based image analysis (OBIA): A review of algorithms and challenges from remote sensing perspective
-
Hossain, M. D., & Chen, D., (2019). Segmentation for object-based image analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogramm. Remote Sens, 150, 115–134. doi: 10.1016/j.isprsjprs.2019.02.009
-
(2019)
ISPRS J. Photogramm. Remote Sens
, vol.150
, pp. 115-134
-
-
Hossain, M.D.1
Chen, D.2
-
50
-
-
0037138473
-
An assessment of support vector machines for land cover classification
-
Huang, C., Davis, L. S., & Townshend, J. R. G., (2002). An assessment of support vector machines for land cover classification. Int. J. Remote Sens, 23 (4), 725–749. doi: 10.1080/01431160110040323
-
(2002)
Int. J. Remote Sens
, vol.23
, Issue.4
, pp. 725-749
-
-
Huang, C.1
Davis, L.S.2
Townshend, J.R.G.3
-
51
-
-
85077504071
-
Deep learning versus object-based image analysis (OBIA) in weed mapping of UAV imagery
-
Huang, H., Lan, Y., Yang, A., Zhang, Y., Wen, S., & Deng, J., (2020). Deep learning versus object-based image analysis (OBIA) in weed mapping of UAV imagery. Int. J. Remote Sens, 41 (9), 3446–3479. doi: 10.1080/01431161.2019.1706112
-
(2020)
Int. J. Remote Sens
, vol.41
, Issue.9
, pp. 3446-3479
-
-
Huang, H.1
Lan, Y.2
Yang, A.3
Zhang, Y.4
Wen, S.5
Deng, J.6
-
52
-
-
84949520073
-
Spectral–spatial hyperspectral image classification based on KNN
-
Huang, K., Li, S., Kang, X., & Fang, L., (2016). Spectral–spatial hyperspectral image classification based on KNN. Sens. Imaging, 17 (1), 1–13. doi: 10.1007/s11220-015-0126-z
-
(2016)
Sens. Imaging
, vol.17
, Issue.1
, pp. 1-13
-
-
Huang, K.1
Li, S.2
Kang, X.3
Fang, L.4
-
53
-
-
85036524454
-
What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?
-
39, 5345–5376
-
Hunt, E. R., & Daughtry, C. S. T., (2018). What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?. Int. J. Remote Sens, 39, 5345–5376. doi: 10.1080/01431161.2017.1410300
-
(2018)
Int. J. Remote Sens
-
-
Hunt, E.R.1
Daughtry, C.S.T.2
-
54
-
-
84962488348
-
First experience with sentinel-2 data for crop and tree species classifications in central Europe
-
Immitzer, M., Vuolo, F., & Atzberger, C., (2016). First experience with sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens, 8(3). doi: 10.3390/rs8030166
-
(2016)
Remote Sens
, pp. 8(3)
-
-
Immitzer, M.1
Vuolo, F.2
Atzberger, C.3
-
55
-
-
63249126016
-
-
European Journal of Agronomy
-
Iniesta, F., Testi, L., Orgaz, F., & Villalobos, F. J., (2009). The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees. European Journal of Agronomy,30, 258–265. doi: 10.1016/j.eja.2008.12.004
-
(2009)
The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees
, vol.30
, pp. 258-265
-
-
Iniesta, F.1
Testi, L.2
Orgaz, F.3
Villalobos, F.J.4
-
56
-
-
85036464565
-
A novel approach for vegetation classification using UAV-based hyperspectral imaging
-
144, 80–85doi
-
Ishida, T., Kurihara, J., Viray, F. A., Namuco, S. B., Paringit, E. C., Perez, G. J., Takahashi, Y., & Marciano, J. J., (2018). A novel approach for vegetation classification using UAV-based hyperspectral imaging. Comput. Electron. Agric. 144, 80–85doi: 10.1016/j.compag.2017.11.027
-
(2018)
Comput. Electron. Agric
-
-
Ishida, T.1
Kurihara, J.2
Viray, F.A.3
Namuco, S.B.4
Paringit, E.C.5
Perez, G.J.6
Takahashi, Y.7
Marciano, J.J.8
-
57
-
-
85022098197
-
Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling
-
Jiménez-Brenes, F. M., López-Granados, F., De Castro, A. I., Torres-Sánchez, J., Serrano, N., & Peña, J. M., (2017). Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling. Plant Methods, 13 (1), 55. doi: 10.1186/s13007-017-0205-3
-
(2017)
Plant Methods
, vol.13
, Issue.1
, pp. 55
-
-
Jiménez-Brenes, F.M.1
López-Granados, F.2
De Castro, A.I.3
Torres-Sánchez, J.4
Serrano, N.5
Peña, J.M.6
-
58
-
-
85032331266
-
Chapter 33 - Object-Oriented Random Forest for High Resolution Land Cover Mapping Using Quickbird-2 Imagery
-
Samui P., Sekhar S., Valentina E.B.T., (eds), Academic Press,. Eds
-
Kavzoglu, T., (2017). Chapter 33 - Object-Oriented Random Forest for High Resolution Land Cover Mapping Using Quickbird-2 Imagery. In P., Samui, S., Sekhar, & E.B.T., Valentina Eds., Handbook of Neural Computation Balas (pp. 607–619). Academic Press. doi:https://doi.org/10.1016/B978-0-12-811318-9.00033-8.
-
(2017)
Handbook of Neural Computation Balas
, pp. 607-619
-
-
Kavzoglu, T.1
-
59
-
-
85015302475
-
Object-based urban tree species classification using bi-temporal worldview-2 and worldview-3 images
-
Li, D., Ke, Y., Gong, H., & Li, X., (2015). Object-based urban tree species classification using bi-temporal worldview-2 and worldview-3 images. Remote Sensing, 7 (12), 16917–16937. doi: 10.3390/rs71215861
-
(2015)
Remote Sensing
, vol.7
, Issue.12
, pp. 16917-16937
-
-
Li, D.1
Ke, Y.2
Gong, H.3
Li, X.4
-
60
-
-
85017406334
-
A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments
-
Li, M., Ma, L., Blaschke, T., Cheng, L., & Tiede, D., (2016). A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int. J. Appl. Earth Obs. Geoinf, 49, 87–98. doi: 10.1016/j.jag.2016.01.011
-
(2016)
Int. J. Appl. Earth Obs. Geoinf
, vol.49
, pp. 87-98
-
-
Li, M.1
Ma, L.2
Blaschke, T.3
Cheng, L.4
Tiede, D.5
-
61
-
-
85052088926
-
Machine learning in agriculture: A review
-
Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D., (2018). Machine learning in agriculture: A review. Sensors (Switzerland), 18 (8), 1–29. doi: 10.3390/s18082674
-
(2018)
Sensors (Switzerland)
, vol.18
, Issue.8
, pp. 1-29
-
-
Liakos, K.G.1
Busato, P.2
Moshou, D.3
Pearson, S.4
Bochtis, D.5
-
62
-
-
79955383550
-
Assessing object-based classification: advantages and limitations
-
Liu, D., & Xia, F., (2010). Assessing object-based classification: advantages and limitations. Remote Sens. Lett, 1 (4), 187–194. doi: 10.1080/01431161003743173
-
(2010)
Remote Sens. Lett
, vol.1
, Issue.4
, pp. 187-194
-
-
Liu, D.1
Xia, F.2
-
63
-
-
78650974078
-
Weed detection for site-specific weed management: mapping and real-time approaches
-
López-Granados, F., (2010). Weed detection for site-specific weed management: mapping and real-time approaches. Weed Res, 51 (1), 1–11. doi: 10.1111/j.1365-3180.2010.00829.x
-
(2010)
Weed Res
, vol.51
, Issue.1
, pp. 1-11
-
-
López-Granados, F.1
-
64
-
-
84939247593
-
Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds
-
17,), 183–199
-
López-Granados, F., Torres-Sánchez, J., Serrano-Pérez, A., De Castro, A. I., Mesas-Carrascosa, F. J., & Peña, J. M., (2016). Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds. Precis. Agric, 17 (2), 183–199. doi: 10.1007/s11119-015-9415-8
-
(2016)
Precis. Agric
-
-
López-Granados, F.1
Torres-Sánchez, J.2
Serrano-Pérez, A.3
De Castro, A.I.4
Mesas-Carrascosa, F.J.5
Peña, J.M.6
-
65
-
-
84922357427
-
Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery
-
Ma, L., Cheng, L., Li, M., Liu, Y., & Ma, X., (2015). Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery. ISPRS J. Photogramm. Remote Sens, 102, 14–27. doi: 10.1016/j.isprsjprs.2014.12.026
-
(2015)
ISPRS J. Photogramm. Remote Sens
, vol.102
, pp. 14-27
-
-
Ma, L.1
Cheng, L.2
Li, M.3
Liu, Y.4
Ma, X.5
-
66
-
-
85014908663
-
Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers
-
Ma, L., Fu, T., Blaschke, T., Li, M., Tiede, D., Zhou, Z., Ma, X., & Chen, D., (2017a). Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers. ISPRS Int. J. Geo-Information, 6(2). doi: 10.3390/ijgi6020051
-
(2017)
ISPRS Int. J. Geo-Information
, pp. 6(2)
-
-
Ma, L.1
Fu, T.2
Blaschke, T.3
Li, M.4
Tiede, D.5
Zhou, Z.6
Ma, X.7
Chen, D.8
-
67
-
-
85021219961
-
A review of supervised object-based land-cover image classification
-
Ma, L., Li, M., Ma, X., Cheng, L., Du, P., & Liu, Y., (2017b). A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens, 130, 277–293. doi: 10.1016/j.isprsjprs.2017.06.001
-
(2017)
ISPRS J. Photogramm. Remote Sens
, vol.130
, pp. 277-293
-
-
Ma, L.1
Li, M.2
Ma, X.3
Cheng, L.4
Du, P.5
Liu, Y.6
-
69
-
-
85058371484
-
Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture
-
Maes, W. H., & Steppe, K., (2019). Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in Plant Science, 24 (2), 152–164. doi: 10.1016/J.TPLANTS.2018.11.007
-
(2019)
Trends in Plant Science
, vol.24
, Issue.2
, pp. 152-164
-
-
Maes, W.H.1
Steppe, K.2
-
70
-
-
85048716904
-
Implementation of machine-learning classification in remote sensing: an applied review
-
Maxwell, A. E., Warner, T. A., & Fang, F., (2018). Implementation of machine-learning classification in remote sensing: an applied review. Int. J. Remote Sens, 39 (9), 2784–2817. doi: 10.1080/01431161.2018.1433343
-
(2018)
Int. J. Remote Sens
, vol.39
, Issue.9
, pp. 2784-2817
-
-
Maxwell, A.E.1
Warner, T.A.2
Fang, F.3
-
71
-
-
0000596361
-
Note on the sampling error of the difference between correlated proportions or percentages
-
McNemar, Q., (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12 (2), 153–157. doi: 10.1007/BF02295996
-
(1947)
Psychometrika
, vol.12
, Issue.2
, pp. 153-157
-
-
McNemar, Q.1
-
73
-
-
85092926343
-
-
Peña, J. M., Vizzari, M., & Modica, G. (,). A comparison of UAV and satellites multispectral imagery monitoring onion crop. an application the ‘Cipolla Rossa di Tropea’ (Italy)., Remote Sens, 12, (20), 3424
-
Messina, G., Peña, J. M., Vizzari, M., & Modica, G. (2020a). A comparison of UAV and satellites multispectral imagery in monitoring onion crop. an application in the ‘Cipolla Rossa di Tropea’ (Italy). Remote Sens, 12 (20), 3424. doi: 10.3390/rs12203424
-
(2020)
-
-
Messina, G.1
-
74
-
-
85083985825
-
-
Monitoring onion crops using UAV multispectral and thermal imagery: preliminary results
-
Messina, G., Praticò, S., Siciliani, B., Curcio, A., Di Fazio, S., & Modica, G. (2020b). Monitoring onion crops using UAV multispectral and thermal imagery: preliminary results. doi: 10.1007/978-3-030-39299-4_94
-
(2020)
-
-
Messina, G.1
Praticò, S.2
Siciliani, B.3
Curcio, A.4
Di Fazio, S.5
Modica, G.6
-
75
-
-
84906313654
-
Stable mean-shift algorithm and its application to the segmentation of arbitrarily large remote sensing images
-
Michel, J., Youssefi, D., & Grizonnet, M., (2015). Stable mean-shift algorithm and its application to the segmentation of arbitrarily large remote sensing images. IEEE, Trans. Geosci. Remote Sens, 53 (2), 952–964. doi: 10.1109/TGRS.2014.2330857
-
(2015)
IEEE, Trans. Geosci. Remote Sens
, vol.53
, Issue.2
, pp. 952-964
-
-
Michel, J.1
Youssefi, D.2
Grizonnet, M.3
-
76
-
-
84937918615
-
On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping
-
Millard, K., & Richardson, M. (2015). On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping. Remote Sensing, 7(7), 8489–8515. doi: 10.3390/rs70708489
-
(2015)
Remote Sensing
, vol.7
, Issue.7
, pp. 8489-8515
-
-
Millard, K.1
Richardson, M.2
-
77
-
-
85086436280
-
-
Modica, G., Messina, G., De Luca, G., Fiozzo, V., & Praticò, S. (2020). Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral imagery. Computers and Electronics in Agriculture, 175, 105500. https://doi.org/10.1016/j.rse.2017.10.005
-
(2020)
Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral imagery. Computers and Electronics in Agriculture, 175, 105500
-
-
Modica, G.1
Messina, G.2
De Luca, G.3
Fiozzo, V.4
Praticò, S.5
-
78
-
-
84889597563
-
A framework for the geometric accuracy assessment of classified objects
-
Möller, M., Birger, J., Gidudu, A., & Gläßer, C., (2013). A framework for the geometric accuracy assessment of classified objects. International Journal of Remote Sensing, 34 (24), 8685–8698. doi: 10.1080/01431161.2013.845319
-
(2013)
International Journal of Remote Sensing
, vol.34
, Issue.24
, pp. 8685-8698
-
-
Möller, M.1
Birger, J.2
Gidudu, A.3
Gläßer, C.4
-
79
-
-
79951950272
-
Support vector machines in remote sensing: A review
-
Mountrakis, G., Im, J., & Ogole, C., (2011). Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens, 66 (3), 247–259. doi: 10.1016/j.isprsjprs.2010.11.001
-
(2011)
ISPRS J. Photogramm. Remote Sens
, vol.66
, Issue.3
, pp. 247-259
-
-
Mountrakis, G.1
Im, J.2
Ogole, C.3
-
80
-
-
85058234347
-
Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery
-
Noi, P. T., & Kappas, M., (2018). Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors (Switzerland), 18(2). doi: 10.3390/s18010018
-
(2018)
Sensors (Switzerland)
, pp. 18(2)
-
-
Noi, P.T.1
Kappas, M.2
-
81
-
-
84874666709
-
Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery
-
Ok, A. O., Senaras, C., & Yuksel, B., (2013). Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery. IEEE, Trans. Geosci. Remote Sens, 51 (3), 1701–1717. doi: 10.1109/TGRS.2012.2207123
-
(2013)
IEEE, Trans. Geosci. Remote Sens
, vol.51
, Issue.3
, pp. 1701-1717
-
-
Ok, A.O.1
Senaras, C.2
Yuksel, B.3
-
82
-
-
85063757727
-
Using aerial imagery and digital photography to monitor growth and yield in winter wheat
-
Olanrewaju, S., Rajan, N., Ibrahim, A. M. H., Rudd, J. C., Liu, S., Sui, R., Jessup, K. E., & Xue, Q., (2019). Using aerial imagery and digital photography to monitor growth and yield in winter wheat. Int. J. Remote Sens, 40 (18), 6905–6929. doi: 10.1080/01431161.2019.1597303
-
(2019)
Int. J. Remote Sens
, vol.40
, Issue.18
, pp. 6905-6929
-
-
Olanrewaju, S.1
Rajan, N.2
Ibrahim, A.M.H.3
Rudd, J.C.4
Liu, S.5
Sui, R.6
Jessup, K.E.7
Xue, Q.8
-
83
-
-
85014622104
-
UAS, sensors, and data processing in agroforestry: A review towards practical applications
-
Pádua, L., Vanko, J., Hruška, J., Adão, T., Sousa, J. J., Peres, E., & Morais, R., (2017). UAS, sensors, and data processing in agroforestry: A review towards practical applications. Int. J. Remote Sens, 38 (8–10), 2349–2391. doi: 10.1080/01431161.2017.1297548
-
(2017)
Int. J. Remote Sens
, vol.38
, Issue.8-10
, pp. 2349-2391
-
-
Pádua, L.1
Vanko, J.2
Hruška, J.3
Adão, T.4
Sousa, J.J.5
Peres, E.6
Morais, R.7
-
84
-
-
77953148490
-
Effects of water deficit on the vegetative response, yield and oil quality of olive trees (Olea europaea L., cv Coratina) grown under intensive cultivation
-
Palese, A. M., Nuzzo, V., Favati, F., Pietrafesa, A., Celano, G., & Xiloyannis, C., (2010). Effects of water deficit on the vegetative response, yield and oil quality of olive trees (Olea europaea L., cv Coratina) grown under intensive cultivation. Sci. Hortic. (Amsterdam), 125 (3), 222–229. doi: 10.1016/j.scienta.2010.03.025
-
(2010)
Sci. Hortic. (Amsterdam)
, vol.125
, Issue.3
, pp. 222-229
-
-
Palese, A.M.1
Nuzzo, V.2
Favati, F.3
Pietrafesa, A.4
Celano, G.5
Xiloyannis, C.6
-
85
-
-
85043535581
-
Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery
-
Pande-Chhetri, R., Abd-Elrahman, A., Liu, T., Morton, J., & Wilhelm, V. L., (2017). Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. Eur. J. Remote Sens, 50 (1), 564–576. doi: 10.1080/22797254.2017.1373602
-
(2017)
Eur. J. Remote Sens
, vol.50
, Issue.1
, pp. 564-576
-
-
Pande-Chhetri, R.1
Abd-Elrahman, A.2
Liu, T.3
Morton, J.4
Wilhelm, V.L.5
-
86
-
-
84983575848
-
Active learning system for weed species recognition based on hyperspectral sensing
-
146, 193–202
-
Pantazi, X. E., Moshou, D., & Bravo, C., (2016). Active learning system for weed species recognition based on hyperspectral sensing. Biosyst. Eng. 146, 193–202. doi: 10.1016/j.biosystemseng.2016.01.014
-
(2016)
Biosyst. Eng
-
-
Pantazi, X.E.1
Moshou, D.2
Bravo, C.3
-
87
-
-
80555140075
-
Scikit-learn: machine learning in python
-
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É., (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res, 12, 2825–2830. https://jmlr.csail.mit.edu/papers/volume12/pedregosa11a/pedregosa11a.pdf
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, É.16
-
88
-
-
84885398102
-
Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images
-
8
-
Peña, J. M., Torres-Sánchez, J., De Castro, A. I., Kelly, M., & López-Granados, F., (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS One, 8 (10). doi: 10.1371/journal.pone.0077151
-
(2013)
PLoS One
-
-
Peña, J.M.1
Torres-Sánchez, J.2
De Castro, A.I.3
Kelly, M.4
López-Granados, F.5
-
89
-
-
84928668178
-
Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution
-
Peña, J. M., Torres-Sánchez, J., Serrano-Pérez, A., De Castro, A. I., & López-Granados, F., (2015). Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors (Switzerland), 15 (3), 5609–5626. doi: 10.3390/s150305609
-
(2015)
Sensors (Switzerland)
, vol.15
, Issue.3
, pp. 5609-5626
-
-
Peña, J.M.1
Torres-Sánchez, J.2
Serrano-Pérez, A.3
De Castro, A.I.4
López-Granados, F.5
-
90
-
-
85015991782
-
Machine learning paradigms for weed mapping via unmanned aerial vehicles
-
Perez-Ortiz, M., Gutierrez, P. A., Peña, J. M., Torres-Sanchez, J., Lopez-Granados, F., & Hervas-Martinez, C., (2017). Machine learning paradigms for weed mapping via unmanned aerial vehicles. 2016 IEEE Symp. Ser. Comput. Intell. SSCI, 2016. doi: 10.1109/SSCI.2016.7849987
-
(2017)
2016 IEEE Symp. Ser. Comput. Intell. SSCI
, pp. 2016
-
-
Perez-Ortiz, M.1
Gutierrez, P.A.2
Peña, J.M.3
Torres-Sanchez, J.4
Lopez-Granados, F.5
Hervas-Martinez, C.6
-
91
-
-
84941766152
-
-
Applied Soft Computing
-
Pérez-Ortiz, M., Peña, J. M., Gutiérrez, P. A., Torres-Sánchez, J., & Hervás-Martínez, C., (2015). A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. Applied Soft Computing. 37, 533–544. doi: 10.1016/j.asoc.2015.08.027
-
(2015)
A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method
, vol.37
, pp. 533-544
-
-
Pérez-Ortiz, M.1
Peña, J.M.2
Gutiérrez, P.A.3
Torres-Sánchez, J.4
Hervás-Martínez, C.5
-
92
-
-
84949520283
-
Selecting patterns and features for between- and within- crop-row weed mapping using UAV-imagery
-
Pérez-Ortiz, M., Peña, J. M., Gutiérrez, P. A., Torres-Sánchez, J., Hervás-Martínez, C., & López-Granados, F., (2016). Selecting patterns and features for between- and within- crop-row weed mapping using UAV-imagery. Expert Syst. Appl, 47, 85–94. doi: 10.1016/j.eswa.2015.10.043
-
(2016)
Expert Syst. Appl
, vol.47
, pp. 85-94
-
-
Pérez-Ortiz, M.1
Peña, J.M.2
Gutiérrez, P.A.3
Torres-Sánchez, J.4
Hervás-Martínez, C.5
López-Granados, F.6
-
93
-
-
85100818706
-
-
Machine Learning Classification of Mediterranean Forest Habitats Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation., Remote Sensing, 13, (4), 586
-
Praticò, S., Solano, F., Di Fazio, S., & Modica, G. (2021). Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sensing, 13 (4), 586. doi: 10.3390/rs13040586
-
(2021)
-
-
Praticò, S.1
Solano, F.2
Di Fazio, S.3
Modica, G.4
-
94
-
-
84863436949
-
A flexible unmanned aerial vehicle for precision agriculture
-
Primicerio, J., Di Gennaro, S. F., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., & Vaccari, F. P., (2012). A flexible unmanned aerial vehicle for precision agriculture. Precis. Agric, 13 (4), 517–523. doi: 10.1007/s11119-012-9257-6
-
(2012)
Precis. Agric
, vol.13
, Issue.4
, pp. 517-523
-
-
Primicerio, J.1
Di Gennaro, S.F.2
Fiorillo, E.3
Genesio, L.4
Lugato, E.5
Matese, A.6
Vaccari, F.P.7
-
95
-
-
85094170456
-
Chapter 10 - Vegetative growth
-
Woodhead Publishing, Woodhead Publishing, &,. (Ed.),. 193–217
-
Primo-Millo, E., & Agusti, M., (2020). Chapter 10 - Vegetative growth. In Woodhead Publishing (Ed.), The Genus Citrus. Woodhead Publishing. 193–217. https://doi.org/10.1016/B978-0-12-812163-4.00010-3.
-
(2020)
The Genus Citrus
-
-
Primo-Millo, E.1
Agusti, M.2
-
96
-
-
85062823060
-
UAV for mapping shrubland vegetation: does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy?
-
Prošek, J., & Šímová, P., (2019). UAV for mapping shrubland vegetation: does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy?. Int. J. Appl. Earth Obs. Geoinf, 75, 151–162. doi: 10.1016/j.jag.2018.10.009
-
(2019)
Int. J. Appl. Earth Obs. Geoinf
, vol.75
, pp. 151-162
-
-
Prošek, J.1
Šímová, P.2
-
97
-
-
84920812571
-
Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery
-
Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L., (2015). Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens, 7 (1), 153–168. doi: 10.3390/rs70100153
-
(2015)
Remote Sens
, vol.7
, Issue.1
, pp. 153-168
-
-
Qian, Y.1
Zhou, W.2
Yan, J.3
Li, W.4
Han, L.5
-
98
-
-
85096495742
-
A novel image fusion method of multi-spectral and sar images for land cover classification
-
Quan, Y., Tong, Y., Feng, W., Dauphin, G., Huang, W., & Xing, M., (2020). A novel image fusion method of multi-spectral and sar images for land cover classification. Remote Sensing, 12 (22), 1–25. doi: 10.3390/rs12223801
-
(2020)
Remote Sensing
, vol.12
, Issue.22
, pp. 1-25
-
-
Quan, Y.1
Tong, Y.2
Feng, W.3
Dauphin, G.4
Huang, W.5
Xing, M.6
-
99
-
-
85080064170
-
A compilation of UAV applications for precision agriculture
-
172
-
Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., & Moscholios, I., (2020). A compilation of UAV applications for precision agriculture. Comput. Networks. 172. doi: 10.1016/j.comnet.2020.107148
-
(2020)
Comput. Networks
-
-
Radoglou-Grammatikis, P.1
Sarigiannidis, P.2
Lagkas, T.3
Moscholios, I.4
-
100
-
-
80052142987
-
Quality assessment of segmentation results devoted to object-based classification
-
Blaschke T., Lang S., Hay G.J., (eds), Springer Berlin Heidelberg, &,. Eds
-
Radoux, J., & Defourny, P., (2008). Quality assessment of segmentation results devoted to object-based classification. In T., Blaschke, S., Lang, & G.J., Hay Eds., Object-Based Image Analysis (pp. 257–271). Springer Berlin Heidelberg. http:// dx.doi.org/10.1007/978-3-540-77058-9_14.
-
(2008)
Object-Based Image Analysis
, pp. 257-271
-
-
Radoux, J.1
Defourny, P.2
-
101
-
-
85099883859
-
Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data
-
Ramezan, C. A., Warner, T. A., Maxwell, A. E., & Price, B. S., (2021). Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data. Remote Sens, 13 (3), 1–27. doi: 10.3390/rs13030368
-
(2021)
Remote Sens
, vol.13
, Issue.3
, pp. 1-27
-
-
Ramezan, C.A.1
Warner, T.A.2
Maxwell, A.E.3
Price, B.S.4
-
102
-
-
84930210544
-
Classification of contaminants from wheat using near-infrared hyperspectral imaging
-
135,. 73–86
-
Ravikanth, L., Singh, C. B., Jayas, D. S., & White, N. D. G., (2015). Classification of contaminants from wheat using near-infrared hyperspectral imaging. Biosyst. Eng. 135. 73–86. doi: 10.1016/j.biosystemseng.2015.04.007
-
(2015)
Biosyst. Eng
-
-
Ravikanth, L.1
Singh, C.B.2
Jayas, D.S.3
White, N.D.G.4
-
103
-
-
85058223118
-
Current and future applications of statistical machine learning algorithms for agricultural machine vision systems
-
Rehman, T. U., Mahmud, M. S., Chang, Y. K., Jin, J., & Shin, J., (2019). Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agric, 156, 585–605. doi: 10.1016/j.compag.2018.12.006
-
(2019)
Comput. Electron. Agric
, vol.156
, pp. 585-605
-
-
Rehman, T.U.1
Mahmud, M.S.2
Chang, Y.K.3
Jin, J.4
Shin, J.5
-
104
-
-
84855970934
-
An assessment of the effectiveness of a random forest classifier for land-cover classification
-
Rodriguez-galiano, V. F., Ghimire, B., Rogan, J., Chica-olmo, M., & Rigol-sanchez, J. P., (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens, 67, 93–104. doi: 10.1016/j.isprsjprs.2011.11.002
-
(2012)
ISPRS J. Photogramm. Remote Sens
, vol.67
, pp. 93-104
-
-
Rodriguez-galiano, V.F.1
Ghimire, B.2
Rogan, J.3
Chica-olmo, M.4
Rigol-sanchez, J.P.5
-
105
-
-
0002872223
-
Monitoring vegetation systems in the great plains with ERTS (earth resources technology satellite)
-
In:, 1, 309–317. Washington
-
Rouse, J. W., Haas, R. H., Schell, J. A., & Deeering, D., (1973). Monitoring vegetation systems in the great plains with ERTS (earth resources technology satellite). In: Third earth resources technology satellite-1 symposium. 1, 309–317. Washington.
-
(1973)
Third earth resources technology satellite-1 symposium
-
-
Rouse, J.W.1
Haas, R.H.2
Schell, J.A.3
Deeering, D.4
-
106
-
-
85044288673
-
Aerial mapping of forests affected by pathogens using UAVs, hyperspectral sensors, and artificial intelligence
-
Sandino, J., Pegg, G., Gonzalez, F., & Smith, G., (2018). Aerial mapping of forests affected by pathogens using UAVs, hyperspectral sensors, and artificial intelligence. Sensors, 18 (4), 944. doi: 10.3390/s18040944
-
(2018)
Sensors
, vol.18
, Issue.4
, pp. 944
-
-
Sandino, J.1
Pegg, G.2
Gonzalez, F.3
Smith, G.4
-
107
-
-
85018465528
-
Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery
-
Schirrmann, M., Giebel, A., Gleiniger, F., Pflanz, M., Lentschke, J., & Dammer, K. H., (2016). Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery. Remote Sens, 8(9). doi; 10.3390/rs8090706
-
(2016)
Remote Sens
, pp. 8(9)
-
-
Schirrmann, M.1
Giebel, A.2
Gleiniger, F.3
Pflanz, M.4
Lentschke, J.5
Dammer, K.H.6
-
108
-
-
85056072839
-
-
7. IEEE ACCESS
-
Shakhatreh, H., Sawalmeh, A., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N. S., Khreishah, A., & Guizani, M., (2018). Unmanned aerial vehicles: A survey on civil applications and key research challenges. 7, 1–58. IEEE ACCESS.
-
(2018)
Unmanned aerial vehicles: A survey on civil applications and key research challenges
, pp. 1-58
-
-
Shakhatreh, H.1
Sawalmeh, A.2
Al-Fuqaha, A.3
Dou, Z.4
Almaita, E.5
Khalil, I.6
Othman, N.S.7
Khreishah, A.8
Guizani, M.9
-
109
-
-
77957334910
-
Low-cost UAV-based thermal infrared remote sensing: platform, calibration and applications
-
IEEE, &,. In:, QingDao
-
Sheng, H., Chao, H., Coopmans, C., Han, J., McKee, M., & Chen, Y., (2010). Low-cost UAV-based thermal infrared remote sensing: platform, calibration and applications. In: Proceedings of 2010 IEEE/ASME international conference on mechatronic and embedded systems and applications, QingDao: IEEE, pp. 38–43. https://doi.org/10.1109/MESA.2010.5552031.
-
(2010)
Proceedings of 2010 IEEE/ASME international conference on mechatronic and embedded systems and applications
, pp. 38-43
-
-
Sheng, H.1
Chao, H.2
Coopmans, C.3
Han, J.4
McKee, M.5
Chen, Y.6
-
110
-
-
85068119513
-
Operational large-scale segmentation of imagery based on iterative elimination
-
Shepherd, J., Bunting, P., & Dymond, J., (2019). Operational large-scale segmentation of imagery based on iterative elimination. Remote Sens, 11 (6), 658. doi: 10.3390/rs11060658
-
(2019)
Remote Sens
, vol.11
, Issue.6
, pp. 658
-
-
Shepherd, J.1
Bunting, P.2
Dymond, J.3
-
111
-
-
0032630347
-
Performance evaluation and analysis of monocular building extraction from aerial imagery
-
Shufelt, J. A., (1999). Performance evaluation and analysis of monocular building extraction from aerial imagery. IEEE, Trans. Pattern Anal. Mach. Intell, 21 (4), 311–326. doi: 10.1109/34.761262
-
(1999)
IEEE, Trans. Pattern Anal. Mach. Intell
, vol.21
, Issue.4
, pp. 311-326
-
-
Shufelt, J.A.1
-
112
-
-
51849156137
-
-
In: Sattar A., Kang B. (eds) AI 2006: Advances Artificial Intelligence. AI 2006. Lecture Notes Computer Science, vol 4304. Springer, Berlin, Heidelberg
-
Sokolova, M., Japkowicz, N., & Szpakowicz, S., (2006). Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In: Sattar A., Kang B. (eds) AI 2006: Advances in Artificial Intelligence. AI 2006. Lecture Notes in Computer Science, vol 4304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941439_114
-
(2006)
Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation
-
-
Sokolova, M.1
Japkowicz, N.2
Szpakowicz, S.3
-
113
-
-
65649138430
-
A systematic analysis of performance measures for classification tasks
-
Sokolova, M., & Lapalme, G., (2009). A systematic analysis of performance measures for classification tasks. Inf. Process. Manag, 45 (4), 427–437. doi: 10.1016/j.ipm.2009.03.002
-
(2009)
Inf. Process. Manag
, vol.45
, Issue.4
, pp. 427-437
-
-
Sokolova, M.1
Lapalme, G.2
-
114
-
-
85077303511
-
A methodology based on GEOBIA and worldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards
-
Solano, F., Di Fazio, S., & Modica, G., (2019). A methodology based on GEOBIA and worldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards. Int. J. Appl. Earth Obs. Geoinf, 83, 101912. doi: 10.1016/j.jag.2019.101912
-
(2019)
Int. J. Appl. Earth Obs. Geoinf
, vol.83
, pp. 101912
-
-
Solano, F.1
Di Fazio, S.2
Modica, G.3
-
115
-
-
85021105660
-
Local and global evaluation for remote sensing image segmentation
-
Su, T., & Zhang, S., (2017). Local and global evaluation for remote sensing image segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 256–276. doi: 10.1016/j.isprsjprs.2017.06.003
-
(2017)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.130
, pp. 256-276
-
-
Su, T.1
Zhang, S.2
-
116
-
-
85051632898
-
Optimizing kNN for mapping vegetation cover of arid and semi-arid areas using landsat images
-
Sun, H., Wang, Q., Wang, G., Lin, H., Luo, P., Li, J., Zeng, S., Xu, X., & Ren, L., (2018). Optimizing kNN for mapping vegetation cover of arid and semi-arid areas using landsat images. Remote Sens, 10(8). doi: 10.3390/rs10081248
-
(2018)
Remote Sens
, pp. 10(8)
-
-
Sun, H.1
Wang, Q.2
Wang, G.3
Lin, H.4
Luo, P.5
Li, J.6
Zeng, S.7
Xu, X.8
Ren, L.9
-
117
-
-
85070686621
-
Identifying terraces in the hilly and gully regions of the loess plateau in China
-
Sun, W., Zhang, Y., Mu, X., Li, J., Gao, P., Zhao, G., Dang, T., & Chiew, F., (2019). Identifying terraces in the hilly and gully regions of the loess plateau in China. L. Degrad. Dev, 30 (17), 2126–2138. doi: 10.1002/ldr.3405
-
(2019)
L. Degrad. Dev
, vol.30
, Issue.17
, pp. 2126-2138
-
-
Sun, W.1
Zhang, Y.2
Mu, X.3
Li, J.4
Gao, P.5
Zhao, G.6
Dang, T.7
Chiew, F.8
-
118
-
-
84959230953
-
Comparison of performance of object-based image analysis techniques available in open source software (spring and orfeo toolbox/monteverdi) considering very high spatial resolution data
-
Teodoro, A. C., & Araujo, R., (2016). Comparison of performance of object-based image analysis techniques available in open source software (spring and orfeo toolbox/monteverdi) considering very high spatial resolution data. J. Appl. Remote Sens, 10 (1), 016011. doi: 10.1117/1.JRS.10.016011
-
(2016)
J. Appl. Remote Sens
, vol.10
, Issue.1
, pp. 016011
-
-
Teodoro, A.C.1
Araujo, R.2
-
119
-
-
3042661357
-
Thematic Map Comparison: Evaluating the Statistical Significance ofDifferences in Classification Accuracy
-
Foody, G. M. (2004). Thematic Map Comparison: Evaluating the Statistical Significance ofDifferences in Classification Accuracy. Photogrammetric Engineering & Remote Sensing, 70(5), 627–633. https://doi.org/10.14358/PERS.70.5.627
-
(2004)
Photogrammetric Engineering & Remote Sensing
, vol.70
, Issue.5
, pp. 627-633
-
-
Foody, G.M.1
-
120
-
-
84874595926
-
Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management
-
Torres-Sánchez, J., López-Granados, F., De Castro, A. I., & Peña-Barragán, J. M., (2013). Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PLoS One, 8(3). doi: 10.1371/journal.pone.0058210
-
(2013)
PLoS One
, pp. 8(3)
-
-
Torres-Sánchez, J.1
López-Granados, F.2
De Castro, A.I.3
Peña-Barragán, J.M.4
-
121
-
-
84926633657
-
An automatic object-based method for optimal thresholding in UAV images: application for vegetation detection in herbaceous crops
-
Torres-Sánchez, J., López-Granados, F., & Peña, J. M., (2015a). An automatic object-based method for optimal thresholding in UAV images: application for vegetation detection in herbaceous crops. Comput. Electron. Agric, 114, 43–52. doi: 10.1016/j.compag.2015.03.019
-
(2015)
Comput. Electron. Agric
, vol.114
, pp. 43-52
-
-
Torres-Sánchez, J.1
López-Granados, F.2
Peña, J.M.3
-
122
-
-
84896137428
-
Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV
-
Torres-Sánchez, J., Peña, J. M., De Castro, A. I., & López-Granados, F., (2014). Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric, 103, 104–113. doi: 10.1016/j.compag.2014.02.009
-
(2014)
Comput. Electron. Agric
, vol.103
, pp. 104-113
-
-
Torres-Sánchez, J.1
Peña, J.M.2
De Castro, A.I.3
López-Granados, F.4
-
124
-
-
85075717968
-
A review on UAV-based applications for precision agriculture
-
Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G., (2019). A review on UAV-based applications for precision agriculture. Inf, 10(11). doi: 10.3390/info10110349
-
(2019)
Inf
, pp. 10(11)
-
-
Tsouros, D.C.1
Bibi, S.2
Sarigiannidis, P.G.3
-
126
-
-
84990824529
-
Scikit-learn
-
Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., & Mueller, A., (2015). Scikit-learn. GetMobile Mob. Comput. Commun, 19 (1), 29–33. doi: 10.1145/2786984.2786995
-
(2015)
GetMobile Mob. Comput. Commun
, vol.19
, Issue.1
, pp. 29-33
-
-
Varoquaux, G.1
Buitinck, L.2
Louppe, G.3
Grisel, O.4
Pedregosa, F.5
Mueller, A.6
-
127
-
-
85081903550
-
-
Remote Sensing, 12, (5), 814
-
Vilar, P., Morais, T. G., Rodrigues, N. R., Gama, I., Monteiro, M. L., Domingos, T., & Teixeira, R. F. M., (2020). Object-Based Classification Approaches for Multitemporal Identification and Monitoring of Pastures in Agroforestry Regions using Multispectral Unmanned Aerial Vehicle Products. Remote Sensing, 12 (5), 814. doi: 10.3390/rs12050814.
-
(2020)
Object-Based Classification Approaches for Multitemporal Identification and Monitoring of Pastures in Agroforestry Regions using Multispectral Unmanned Aerial Vehicle Products
-
-
Vilar, P.1
Morais, T.G.2
Rodrigues, N.R.3
Gama, I.4
Monteiro, M.L.5
Domingos, T.6
Teixeira, R.F.M.7
-
128
-
-
85077769097
-
Fine scale plant community assessment in coastal meadows using UAV based multispectral data
-
Villoslada, M., Bergamo, T. F., Ward, R. D., Burnside, N. G., Joyce, C. B., Bunce, R. G. H., & Sepp, K., (2020). Fine scale plant community assessment in coastal meadows using UAV based multispectral data. Ecol. Indic, 111, 105979. doi: 10.1016/j.ecolind.2019.105979
-
(2020)
Ecol. Indic
, vol.111
, pp. 105979
-
-
Villoslada, M.1
Bergamo, T.F.2
Ward, R.D.3
Burnside, N.G.4
Joyce, C.B.5
Bunce, R.G.H.6
Sepp, K.7
-
129
-
-
10844220846
-
Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery
-
Wang, L., Sousa, W. P., & Gong, P., (2004). Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing, 25 (24), 5655–5668. doi: 10.1080/014311602331291215
-
(2004)
International Journal of Remote Sensing
, vol.25
, Issue.24
, pp. 5655-5668
-
-
Wang, L.1
Sousa, W.P.2
Gong, P.3
-
130
-
-
77957752577
-
Environmental modelling & software an automatic region-based image segmentation algorithm for remote sensing applications
-
Wang, Z., Jensen, J. R., & Im, J., (2010). Environmental modelling & software an automatic region-based image segmentation algorithm for remote sensing applications. Environ. Model. Softw, 25 (10), 1149–1165. doi: 10.1016/j.envsoft.2010.03.019
-
(2010)
Environ. Model. Softw
, vol.25
, Issue.10
, pp. 1149-1165
-
-
Wang, Z.1
Jensen, J.R.2
Im, J.3
-
131
-
-
84896962668
-
Optimizing multi-resolution segmentation scale using empirical methods: exploring the sensitivity of the supervised discrepancy measure euclidean distance 2 (ED2)
-
Witharana, C., & Civco, D. L., (2014). Optimizing multi-resolution segmentation scale using empirical methods: exploring the sensitivity of the supervised discrepancy measure euclidean distance 2 (ED2). ISPRS J. Photogramm. Remote Sens, 87, 108–121. doi: 10.1016/j.isprsjprs.2013.11.006
-
(2014)
ISPRS J. Photogramm. Remote Sens
, vol.87
, pp. 108-121
-
-
Witharana, C.1
Civco, D.L.2
-
132
-
-
84929295817
-
An object-based SVM method incorporating optimal segmentation scale estimation using bhattacharyya distance for mapping salt cedar (Tamarisk spp.) with quickBird imagery
-
Xun, L., & Wang, L., (2015). An object-based SVM method incorporating optimal segmentation scale estimation using bhattacharyya distance for mapping salt cedar (Tamarisk spp.) with quickBird imagery. GIScience and Remote Sensing, 52 (3), 257–273. doi: 10.1080/15481603.2015.1026049
-
(2015)
GIScience and Remote Sensing
, vol.52
, Issue.3
, pp. 257-273
-
-
Xun, L.1
Wang, L.2
-
133
-
-
85062976622
-
Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery
-
Yang, L., Mansaray, L. R., Huang, J., & Wang, L., (2019). Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery. Remote Sens, 11(5). doi: 10.3390/rs11050514
-
(2019)
Remote Sens
, pp. 11(5)
-
-
Yang, L.1
Mansaray, L.R.2
Huang, J.3
Wang, L.4
-
134
-
-
85046801430
-
A review of accuracy assessment for object-based image analysis: from per-pixel to per-polygon approaches
-
Elsevier B.V
-
Ye, S., Pontius, R. G., & Rakshit, R., (2018). A review of accuracy assessment for object-based image analysis: from per-pixel to per-polygon approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 141 (July), 137–147. Elsevier B.V. doi: 10.1016/j.isprsjprs.2018.04.002
-
(2018)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.141
, Issue.July
, pp. 137-147
-
-
Ye, S.1
Pontius, R.G.2
Rakshit, R.3
-
135
-
-
84868629775
-
The application of small unmanned aerial systems for precision agriculture: A review
-
Zhang, C., & Kovacs, J. M., (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric, 13 (6), 693–712. doi: 10.1007/s11119-012-9274-5
-
(2012)
Precis. Agric
, vol.13
, Issue.6
, pp. 693-712
-
-
Zhang, C.1
Kovacs, J.M.2
-
136
-
-
84902481208
-
Object-based vegetation mapping in the kissimmee river watershed using hymap data and machine learning techniques
-
Zhang, C., & Xie, Z., (2013). Object-based vegetation mapping in the kissimmee river watershed using hymap data and machine learning techniques. Wetlands, 33 (2), 233–244. doi: 10.1007/s13157-012-0373-x
-
(2013)
Wetlands
, vol.33
, Issue.2
, pp. 233-244
-
-
Zhang, C.1
Xie, Z.2
-
137
-
-
84922378744
-
Segmentation quality evaluation using region-based precision and recall measures for remote sensing images
-
Zhang, X., Feng, X., Xiao, P., He, G., & Zhu, L., (2015). Segmentation quality evaluation using region-based precision and recall measures for remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 102, 73–84. doi: 10.1016/j.isprsjprs.2015.01.009
-
(2015)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.102
, pp. 73-84
-
-
Zhang, X.1
Feng, X.2
Xiao, P.3
He, G.4
Zhu, L.5
-
138
-
-
85063217053
-
Incorporating surface elevation information in UAV multispectral images for mapping weed patches
-
Zisi, T., Alexandridis, T. K., Kaplanis, S., Navrozidis, I., Tamouridou, A. A., Lagopodi, A., Moshou, D., & Polychronos, V., (2018). Incorporating surface elevation information in UAV multispectral images for mapping weed patches. J. Imaging, 4(11). doi: 10.3390/jimaging4110132
-
(2018)
J. Imaging
, pp. 4(11)
-
-
Zisi, T.1
Alexandridis, T.K.2
Kaplanis, S.3
Navrozidis, I.4
Tamouridou, A.A.5
Lagopodi, A.6
Moshou, D.7
Polychronos, V.8
|