메뉴 건너뛰기




Volumn 11, Issue 4, 2021, Pages

Wheat yield forecasting for the tisza river catchment using landsat 8 ndvi and savi time series and reported crop statistics

Author keywords

Landsat 8; NDVI; SAVI; Wheat; Yield forecasting

Indexed keywords


EID: 85106441432     PISSN: None     EISSN: 20734395     Source Type: Journal    
DOI: 10.3390/agronomy11040652     Document Type: Article
Times cited : (37)

References (54)
  • 1
    • 84877678838 scopus 로고    scopus 로고
    • Using low resolution satellite imagey for yield prediction and yield anomaly detection
    • [CrossRef]
    • Rembold, F.; Atzberger, C.; Rojas, O.; Savin, I. Using low resolution satellite imagey for yield prediction and yield anomaly detection. Remote Sens. 2013, 11, 1704–1733. [CrossRef]
    • (2013) Remote Sens , vol.11 , pp. 1704-1733
    • Rembold, F.1    Atzberger, C.2    Rojas, O.3    Savin, I.4
  • 2
    • 84874788283 scopus 로고    scopus 로고
    • Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs
    • [CrossRef]
    • Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [CrossRef]
    • (2013) Remote Sens , vol.5 , pp. 949-981
    • Atzberger, C.1
  • 4
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • [CrossRef]
    • Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [CrossRef]
    • (1979) Remote Sens. Environ , vol.8 , pp. 127-150
    • Tucker, C.1
  • 6
    • 0019392801 scopus 로고
    • Remote sensing of total dry-matter accumulation in winter wheat
    • [CrossRef]
    • Tucker, C.J.; Holben, B.N.; Elgin, J.H., Jr.; McMurtrey, J.E., III. Remote sensing of total dry-matter accumulation in winter wheat. Remote Sens. Environ. 1981, 11, 171–189. [CrossRef]
    • (1981) Remote Sens. Environ , vol.11 , pp. 171-189
    • Tucker, C.J.1    Holben, B.N.2    Elgin, J.H.3    McMurtrey, J.E.4
  • 7
    • 0024165401 scopus 로고
    • A Soil-Adjusted Vegetation Index (SAVI)
    • [CrossRef]
    • Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
    • (1988) Remote Sens. Environ , vol.25 , pp. 295-309
    • Huete, A.R.1
  • 9
    • 85076706543 scopus 로고    scopus 로고
    • Integration of normalised differentvegetation index and Soil-Adjusted Vegetation Index for mangrove vegetation delineation
    • [CrossRef]
    • Rhyma, P.; Norizah, K.; Hamdan, O.; Faridah-Hanum, I.; Zulfa, A. Integration of normalised differentvegetation index and Soil-Adjusted Vegetation Index for mangrove vegetation delineation. Remote Sens. Appl. 2020, 17, 100280. [CrossRef]
    • (2020) Remote Sens. Appl , vol.17 , pp. 100280
    • Rhyma, P.1    Norizah, K.2    Hamdan, O.3    Faridah-Hanum, I.4    Zulfa, A.5
  • 11
    • 0034522818 scopus 로고    scopus 로고
    • Estimating crop yields and production by integrating the FAO Crop Specific Water data and ground-based ancillary data
    • [CrossRef]
    • Reynolds, C.A.; Yitayew, M.; Slack, D.C.; Hatchinson, C.F.; Huete, A.; Petersen, M.S. Estimating crop yields and production by integrating the FAO Crop Specific Water data and ground-based ancillary data. Int. J. Remote Sens. 2000, 21, 3487–3508. [CrossRef]
    • (2000) Int. J. Remote Sens , vol.21 , pp. 3487-3508
    • Reynolds, C.A.1    Yitayew, M.2    Slack, D.C.3    Hatchinson, C.F.4    Huete, A.5    Petersen, M.S.6
  • 12
    • 0035882614 scopus 로고    scopus 로고
    • Study of crop growth parameters using Airborne Imaging Spectrometer data
    • [CrossRef]
    • Patel, N.K.; Patnaik, C.; Dutta, S.; Shekh, A.M.; Dane, A.J. Study of crop growth parameters using Airborne Imaging Spectrometer data. Int. J. Remote Sens. 2001, 22, 2401–2411. [CrossRef]
    • (2001) Int. J. Remote Sens , vol.22 , pp. 2401-2411
    • Patel, N.K.1    Patnaik, C.2    Dutta, S.3    Shekh, A.M.4    Dane, A.J.5
  • 13
    • 80052327172 scopus 로고    scopus 로고
    • Evaluation of sentinel-2 spectral sampling for radiative transfer model based LAI estimation of wheat, sugar beet, and maize
    • [CrossRef]
    • Richter, K.; Atzberger, C.; Vuolo, F.; D’Urso, G. Evaluation of sentinel-2 spectral sampling for radiative transfer model based LAI estimation of wheat, sugar beet, and maize. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 458–464. [CrossRef]
    • (2011) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.4 , pp. 458-464
    • Richter, K.1    Atzberger, C.2    Vuolo, F.3    D’Urso, G.4
  • 14
    • 84874772599 scopus 로고    scopus 로고
    • Estimation of Leaf Area Index using DEIMOS-1 data: Calibration and transferability of a semi-empirical relationship between two agricultural areas
    • [CrossRef]
    • Vuolo, F.; Neugebauer, N.; Falanga, S.; Atzberger, C.; D’Urso, G. Estimation of Leaf Area Index using DEIMOS-1 data: Calibration and transferability of a semi-empirical relationship between two agricultural areas. Remote Sens. 2013, 5, 1274–1291. [CrossRef]
    • (2013) Remote Sens , vol.5 , pp. 1274-1291
    • Vuolo, F.1    Neugebauer, N.2    Falanga, S.3    Atzberger, C.4    D’Urso, G.5
  • 15
    • 79953182966 scopus 로고    scopus 로고
    • Object-based crop identification using multiple vegetation indices, textuaral features and crop phenology
    • [CrossRef]
    • Pena-Barragan, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textuaral features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [CrossRef]
    • (2011) Remote Sens. Environ , vol.115 , pp. 1301-1316
    • Pena-Barragan, J.M.1    Ngugi, M.K.2    Plant, R.E.3    Six, J.4
  • 16
    • 84923543554 scopus 로고    scopus 로고
    • Wheat Yield Forecasting for Punjab Province from Vegetation Index Time Series and Historic Crop Statistics
    • [CrossRef]
    • Dempewolf, J.; Adusei, B.; Becker-Rehef, I.; Hansen, M.; Potapov, P.; Khan, A.; Barker, B. Wheat Yield Forecasting for Punjab Province from Vegetation Index Time Series and Historic Crop Statistics. Remote Sens. 2014, 6, 9653–9675. [CrossRef]
    • (2014) Remote Sens , vol.6 , pp. 9653-9675
    • Dempewolf, J.1    Adusei, B.2    Becker-Rehef, I.3    Hansen, M.4    Potapov, P.5    Khan, A.6    Barker, B.7
  • 17
    • 84887593688 scopus 로고    scopus 로고
    • Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least sqaures regression using hyperspectral measurements
    • [CrossRef]
    • Fu, Y.; Yang, G.; Wang, J.; Song, X.; Feng, H. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least sqaures regression using hyperspectral measurements. Comput. Electron. Agric. 2014, 100, 51–59. [CrossRef]
    • (2014) Comput. Electron. Agric , vol.100 , pp. 51-59
    • Fu, Y.1    Yang, G.2    Wang, J.3    Song, X.4    Feng, H.5
  • 18
    • 84946843209 scopus 로고    scopus 로고
    • Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and Water conditions
    • [CrossRef]
    • Xie, Q.; Huang, W.; Dash, J.; Song, X.; Huang, L.; Zaho, J.; Wang, R. Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and Water conditions. Adv. Space Res. 2015, 56, 2365–2373. [CrossRef]
    • (2015) Adv. Space Res , vol.56 , pp. 2365-2373
    • Xie, Q.1    Huang, W.2    Dash, J.3    Song, X.4    Huang, L.5    Zaho, J.6    Wang, R.7
  • 19
    • 84954561968 scopus 로고    scopus 로고
    • Agricultural biomass monitoring on watersheds based on remote sensed data
    • [CrossRef]
    • Tamás, J.; Nagy, A.; Fehér, J. Agricultural biomass monitoring on watersheds based on remote sensed data. Water Sci. Technol. 2015, 72, 2212–2220. [CrossRef]
    • (2015) Water Sci. Technol , vol.72 , pp. 2212-2220
    • Tamás, J.1    Nagy, A.2    Fehér, J.3
  • 20
    • 84944328874 scopus 로고    scopus 로고
    • Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: Sensitive stages and thresholds for temperature and duration
    • [CrossRef]
    • Prasad, P.V.V.; Djanaguiraman, M.; Perumal, R.; Ciampitti, I.A. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: Sensitive stages and thresholds for temperature and duration. Front. Plant Sci. 2015, 6, 820. [CrossRef]
    • (2015) Front. Plant Sci , vol.6 , pp. 820
    • Prasad, P.V.V.1    Djanaguiraman, M.2    Perumal, R.3    Ciampitti, I.A.4
  • 21
    • 0022267354 scopus 로고
    • Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984
    • [CrossRef]
    • Tucker, C.J.; Vanpraet, C.L.; Sharman, M.J.; Van Ittersum, G. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sens. Environ. 1985, 17, 233–249. [CrossRef]
    • (1985) Remote Sens. Environ , vol.17 , pp. 233-249
    • Tucker, C.J.1    Vanpraet, C.L.2    Sharman, M.J.3    Van Ittersum, G.4
  • 22
    • 0022923831 scopus 로고
    • Global vegetation dynamics: Satellite observations over Asia
    • [CrossRef]
    • Malingreau, J.P. Global vegetation dynamics: Satellite observations over Asia. Remote Sens. Environ. 1986, 7, 1121–1146. [CrossRef]
    • (1986) Remote Sens. Environ , vol.7 , pp. 1121-1146
    • Malingreau, J.P.1
  • 23
    • 84874181706 scopus 로고    scopus 로고
    • Non-invasive water stress assessment methods in orchards
    • [CrossRef]
    • Nagy, A.; Tamás, J. Non-invasive water stress assessment methods in orchards. Commun. Soil Sci. Plant Anal. 2013, 44, 366–376. [CrossRef]
    • (2013) Commun. Soil Sci. Plant Anal , vol.44 , pp. 366-376
    • Nagy, A.1    Tamás, J.2
  • 24
    • 85047784422 scopus 로고    scopus 로고
    • Wheat and maize yield forecasting for the Tisza river catchment using MODIS NDVI time series and reported crop statistics
    • [CrossRef]
    • Nagy, A.; Fehér, J.; Tamás, J. Wheat and maize yield forecasting for the Tisza river catchment using MODIS NDVI time series and reported crop statistics. Comput. Electron. Agric. 2018, 151, 41–49. [CrossRef]
    • (2018) Comput. Electron. Agric , vol.151 , pp. 41-49
    • Nagy, A.1    Fehér, J.2    Tamás, J.3
  • 25
    • 85106450939 scopus 로고    scopus 로고
    • Versenyképes búzatermesztés
    • Budapest: Magyarország, ISBN 9789632866925
    • Kismányoky, T. Versenyképes búzatermesztés. In Mezőgazda Kiadó; Budapest: Magyarország, 2013; p. 288. ISBN 9789632866925.
    • (2013) Mezőgazda Kiadó , pp. 288
    • Kismányoky, T.1
  • 26
    • 85083000007 scopus 로고    scopus 로고
    • Seasonal predictability of weather and crop yield in regions of Central European continental climate
    • 0168, [CrossRef]
    • Juhász, C.; Gálya, B.; Kovács, E.; Nagy, A.; Tamás, J.; Huzsvai, L. Seasonal predictability of weather and crop yield in regions of Central European continental climate. Comput. Electron. Agric. 2020, 0168-1699, 173. [CrossRef]
    • (2020) Comput. Electron. Agric , pp. 173-1699
    • Juhász, C.1    Gálya, B.2    Kovács, E.3    Nagy, A.4    Tamás, J.5    Huzsvai, L.6
  • 27
    • 85055699703 scopus 로고    scopus 로고
    • The economic context of irrigation development. (in Hungarian)
    • Biro, S., Kapronczai, I., Szűcs, I., Váradi, L., Eds.; Agricultural Research Institute: Budapest, Hungary
    • Biro, S.; Apáti, F.; Szőllősi, L.; Szűcs, I. The economic context of irrigation development. (in Hungarian). In Water Use and Irrigation Development in Hungarian Agriculture (in Hungarian); Biro, S., Kapronczai, I., Szűcs, I., Váradi, L., Eds.; Agricultural Research Institute: Budapest, Hungary, 2011; pp. 45–74.
    • (2011) Water Use and Irrigation Development in Hungarian Agriculture (in Hungarian) , pp. 45-74
    • Biro, S.1    Apáti, F.2    Szőllősi, L.3    Szűcs, I.4
  • 30
    • 84875549888 scopus 로고    scopus 로고
    • The use of satellite data for cop yield gap analysis
    • [CrossRef]
    • Lobell, D.B. The use of satellite data for cop yield gap analysis. Field Crops Res. 2013, 143, 56–64. [CrossRef]
    • (2013) Field Crops Res , vol.143 , pp. 56-64
    • Lobell, D.B.1
  • 31
    • 33645711391 scopus 로고    scopus 로고
    • Predicting winter wheat condition, grain yield and protein content using multi-temporal EnviSat-ASAR and Landsat TM satellite images
    • [CrossRef]
    • Liu, L.; Wang, J.; Bao, Y.; Huang, W.; Ma, Z.; Zhao, C. Predicting winter wheat condition, grain yield and protein content using multi-temporal EnviSat-ASAR and Landsat TM satellite images. Int. J. Remote Sens. 2006, 27, 737–753. [CrossRef]
    • (2006) Int. J. Remote Sens , vol.27 , pp. 737-753
    • Liu, L.1    Wang, J.2    Bao, Y.3    Huang, W.4    Ma, Z.5    Zhao, C.6
  • 32
    • 84874779952 scopus 로고    scopus 로고
    • Testing the Temporal Ability of Landsat Imagery and Precision Agriculture Technology to Provide High Resolution Historical Estimates of Wheat Yield at the Farm Scale
    • [CrossRef]
    • Lyle, G.; Lewis, M.; Ostendorf, B. Testing the Temporal Ability of Landsat Imagery and Precision Agriculture Technology to Provide High Resolution Historical Estimates of Wheat Yield at the Farm Scale. Remote Sens. 2013, 5, 1549–1567. [CrossRef]
    • (2013) Remote Sens , vol.5 , pp. 1549-1567
    • Lyle, G.1    Lewis, M.2    Ostendorf, B.3
  • 33
    • 85065099170 scopus 로고    scopus 로고
    • Spatial Estimation of Wheat Yields from Landsat’s Visible, near Infrared and Thermal Reflectance Bands
    • [CrossRef]
    • Potgieter, A.B.; Power, B.; Mclean, J.; Davis, P.; Rodriguez, D. Spatial Estimation of Wheat Yields from Landsat’s Visible, near Infrared and Thermal Reflectance Bands. Int. J. Remote Sens. Appl. 2014, 4, 134–143. [CrossRef]
    • (2014) Int. J. Remote Sens. Appl , vol.4 , pp. 134-143
    • Potgieter, A.B.1    Power, B.2    Mclean, J.3    Davis, P.4    Rodriguez, D.5
  • 34
    • 85100697627 scopus 로고    scopus 로고
    • Within-Field Relationships between Satellite-Derived Vegetation Indices, Grain Yield and Spike Number of Winter Wheat and Triticale
    • [CrossRef]
    • Panek, E.; Gozdowski, D.; Stepien, M.; Samborski, S.; Rucinski, D.; Buszke, B. Within-Field Relationships between Satellite-Derived Vegetation Indices, Grain Yield and Spike Number of Winter Wheat and Triticale. Agronomy 2020, 10, 1842. [CrossRef]
    • (2020) Agronomy , vol.10 , pp. 1842
    • Panek, E.1    Gozdowski, D.2    Stepien, M.3    Samborski, S.4    Rucinski, D.5    Buszke, B.6
  • 35
    • 85039415370 scopus 로고    scopus 로고
    • Improving crop yield estimation by assimilating LAI and inputting satellite-based surface incoming solar radiation into SWAP model
    • 250, –251, [CrossRef]
    • Mokhtari, A.; Noory, H.; Vazifedoust, M. Improving crop yield estimation by assimilating LAI and inputting satellite-based surface incoming solar radiation into SWAP model. Agric. Forest Meteorol. 2018, 250–251, 159–170. [CrossRef]
    • (2018) Agric. Forest Meteorol , pp. 159-170
    • Mokhtari, A.1    Noory, H.2    Vazifedoust, M.3
  • 37
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, Part I–A discussion of principles
    • [CrossRef]
    • Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models, Part I–A discussion of principles. J. Hydrol. 1970, 10, 282–290. [CrossRef]
    • (1970) J. Hydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 38
    • 0026443533 scopus 로고
    • Remote sensing and crop production models: Present trends
    • [CrossRef]
    • Delécolle, R.; Maas, S.J.; Guérif, M.; Baret, F. Remote sensing and crop production models: Present trends. ISPRS J. Photogramm. 1992, 47, 145–161. [CrossRef]
    • (1992) ISPRS J. Photogramm , vol.47 , pp. 145-161
    • Delécolle, R.1    Maas, S.J.2    Guérif, M.3    Baret, F.4
  • 39
    • 0037057539 scopus 로고    scopus 로고
    • Improving an operational wheat yield model using phenological phase-based normalized difference vegetation index
    • [CrossRef]
    • Boken, V.K.; Shaykewich, C.F. Improving an operational wheat yield model using phenological phase-based normalized difference vegetation index. Int. J. Remote Sens. 2002, 23, 4155–4168. [CrossRef]
    • (2002) Int. J. Remote Sens , vol.23 , pp. 4155-4168
    • Boken, V.K.1    Shaykewich, C.F.2
  • 40
    • 2342460363 scopus 로고    scopus 로고
    • Optimal time for remote sensing to relate to crop grain yield on the Canadian prairies
    • Basnyat, P.; McConkey, B.; Lafond, G.P.; Moulin, A.; Pelcat, Y. Optimal time for remote sensing to relate to crop grain yield on the Canadian prairies. Can. J. Plant Sci. 2004, 84, 97–103.
    • (2004) Can. J. Plant Sci , vol.84 , pp. 97-103
    • Basnyat, P.1    McConkey, B.2    Lafond, G.P.3    Moulin, A.4    Pelcat, Y.5
  • 41
    • 77949487217 scopus 로고    scopus 로고
    • A generalized regressionbased model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data
    • [CrossRef]
    • Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regressionbased model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323. [CrossRef]
    • (2010) Remote Sens. Environ , vol.114 , pp. 1312-1323
    • Becker-Reshef, I.1    Vermote, E.2    Lindeman, M.3    Justice, C.4
  • 42
    • 34247344426 scopus 로고    scopus 로고
    • Can wheat yield be assessed by early measurements of Normalized Difference Vegetation Index?
    • [CrossRef]
    • Marti, J.; Bort, J.; Slafer, G.A.; Araus, J.L. Can wheat yield be assessed by early measurements of Normalized Difference Vegetation Index? Ann. Appl. Biol. 2007, 150, 253–257. [CrossRef]
    • (2007) Ann. Appl. Biol , vol.150 , pp. 253-257
    • Marti, J.1    Bort, J.2    Slafer, G.A.3    Araus, J.L.4
  • 43
    • 0037057555 scopus 로고    scopus 로고
    • Wheat yield estimates using multi-temporal NDVI satellite imagery
    • [CrossRef]
    • Labus, M.P.; Nielsen, G.A.; Lawrence, R.L.; Engel, R.; Long, D.S. Wheat yield estimates using multi-temporal NDVI satellite imagery. Int. J. Remote Sens. 2002, 23, 4169–4180. [CrossRef]
    • (2002) Int. J. Remote Sens , vol.23 , pp. 4169-4180
    • Labus, M.P.1    Nielsen, G.A.2    Lawrence, R.L.3    Engel, R.4    Long, D.S.5
  • 44
    • 78651435852 scopus 로고    scopus 로고
    • Crop yield forecasting on the Canadian Prairies using MODIS NDVI data
    • [CrossRef]
    • Mkhabela, M.K.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. Forest Meteorol. 2011, 151, 385–393. [CrossRef]
    • (2011) Agric. Forest Meteorol , vol.151 , pp. 385-393
    • Mkhabela, M.K.1    Bullock, P.2    Raj, S.3    Wang, S.4    Yang, Y.5
  • 45
    • 85067989498 scopus 로고    scopus 로고
    • Jujube yield prediction method combining Landsat 8 Vegetation Index and the phenological length
    • [CrossRef]
    • Bai, T.; Zhang, N.; Mercatoris, B.; Chen, Y. Jujube yield prediction method combining Landsat 8 Vegetation Index and the phenological length. Comput. Electron. Agric. 2019, 162, 1011–1027. [CrossRef]
    • (2019) Comput. Electron. Agric , vol.162 , pp. 1011-1027
    • Bai, T.1    Zhang, N.2    Mercatoris, B.3    Chen, Y.4
  • 47
    • 0026359304 scopus 로고
    • Wheat yield estimation at the farm level using TM Landsat and agrometeorological data
    • [CrossRef]
    • Rudorff, B.F.T.; Batista, G.T. Wheat yield estimation at the farm level using TM Landsat and agrometeorological data. Int. J. Remote Sens. 1991, 12, 2477–2484. [CrossRef]
    • (1991) Int. J. Remote Sens , vol.12 , pp. 2477-2484
    • Rudorff, B.F.T.1    Batista, G.T.2
  • 48
    • 0022209460 scopus 로고
    • Canopy reflectance, photosynthesis and transpiration
    • [CrossRef]
    • Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [CrossRef]
    • (1985) Int. J. Remote Sens , vol.6 , pp. 1335-1372
    • Sellers, P.J.1
  • 49
    • 84994479136 scopus 로고    scopus 로고
    • Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska
    • [CrossRef]
    • Goswami, S.; Gamon, J.; Vargas, S.; Tweedie, C. Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska. PeerJ PrePrints 2015, 3, e913v1. [CrossRef]
    • (2015) PeerJ PrePrints , vol.3 , pp. e913v1
    • Goswami, S.1    Gamon, J.2    Vargas, S.3    Tweedie, C.4
  • 50
    • 85079354941 scopus 로고    scopus 로고
    • Assessing the fidelity of Landsat-based fAPAR models in two diverse sugarcane growing regions
    • [CrossRef]
    • Muller, S.J.; Sithole, P.; Singels, A.; Van Niekerk, A. Assessing the fidelity of Landsat-based fAPAR models in two diverse sugarcane growing regions. Comput. Electron. Agric. 2020, 170, 105248. [CrossRef]
    • (2020) Comput. Electron. Agric , vol.170 , pp. 105248
    • Muller, S.J.1    Sithole, P.2    Singels, A.3    Van Niekerk, A.4
  • 51
    • 85018257749 scopus 로고    scopus 로고
    • Evaluation of MODIS and Landsat multiband vegetation indices used for wheat yield estimation in irrigated
    • [CrossRef]
    • Liaqat, U.M.; Cheema, M.J.M.; Huang, W.; Mahmood, T.; Zaman, M.; Khan, M.M. Evaluation of MODIS and Landsat multiband vegetation indices used for wheat yield estimation in irrigated. Comput. Electron. Agric. 2017, 138, 39–47. [CrossRef]
    • (2017) Comput. Electron. Agric , vol.138 , pp. 39-47
    • Liaqat, U.M.1    Cheema, M.J.M.2    Huang, W.3    Mahmood, T.4    Zaman, M.5    Khan, M.M.6
  • 52
    • 16844366163 scopus 로고    scopus 로고
    • Artificial neural networks to predict corn yield from compact airborne spectrographic imager data
    • [CrossRef]
    • Uno, Y.; Prasher, S.O.; Lacroix, R.; Goel, P.K.; Karimi, Y.; Viau, A.; Patel, R.M. Artificial neural networks to predict corn yield from compact airborne spectrographic imager data. Comput. Electron. Agr. 2005, 47, 149–161. [CrossRef]
    • (2005) Comput. Electron. Agr , vol.47 , pp. 149-161
    • Uno, Y.1    Prasher, S.O.2    Lacroix, R.3    Goel, P.K.4    Karimi, Y.5    Viau, A.6    Patel, R.M.7
  • 53
    • 24344496079 scopus 로고    scopus 로고
    • Assessment of durum wheat yield using visible and near-infrared reflectance spectra of canopies
    • [CrossRef]
    • Ferrio, J.P.; Villegas, D.; Zarco, J.; Aparicio, N.; Araus, J.L.; Royo, C. Assessment of durum wheat yield using visible and near-infrared reflectance spectra of canopies. Field Crop. Res. 2005, 94, 126–148. [CrossRef]
    • (2005) Field Crop. Res , vol.94 , pp. 126-148
    • Ferrio, J.P.1    Villegas, D.2    Zarco, J.3    Aparicio, N.4    Araus, J.L.5    Royo, C.6
  • 54
    • 34447118981 scopus 로고    scopus 로고
    • Prediction of citrus yield from airborne hyperspectral imagery
    • [CrossRef]
    • Ye, X.; Sakai, K.; Manago, M.; Asada, S.; Sasao, A. Prediction of citrus yield from airborne hyperspectral imagery. Precis. Agric. 2007, 8, 111–125. [CrossRef]
    • (2007) Precis. Agric , vol.8 , pp. 111-125
    • Ye, X.1    Sakai, K.2    Manago, M.3    Asada, S.4    Sasao, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.