메뉴 건너뛰기




Volumn 164, Issue , 2020, Pages 229-239

Robustness analytics to data heterogeneity in edge computing

Author keywords

Active learning; Distributed machine learning; Federated learning; Fog computing; Intelligent edge computing; User data privacy

Indexed keywords

EDGE COMPUTING; POPULATION STATISTICS;

EID: 85095711656     PISSN: 01403664     EISSN: 1873703X     Source Type: Journal    
DOI: 10.1016/j.comcom.2020.10.020     Document Type: Article
Times cited : (6)

References (26)
  • 1
    • 85045348132 scopus 로고    scopus 로고
    • Federated learning: Strategies for improving communication efficiency
    • arXiv preprint
    • Konečnỳ, J., McMahan, H., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D., Federated learning: Strategies for improving communication efficiency. 2016 arXiv preprint arXiv:1610.05492.
    • (2016)
    • Konečnỳ, J.1    McMahan, H.2    Yu, F.X.3    Richtárik, P.4    Suresh, A.T.5    Bacon, D.6
  • 2
    • 85126508923 scopus 로고    scopus 로고
    • Fogification of electric drives: An industrial use case
    • The 25th International Conference on Emerging Technologies and Factory Automation ETFA2020, 08 Sep 2020, Vienna, Austria.
    • M. Barzegaran, N. Desai, J. Qian, K. Tange, B. Zarrin, P. Pop, J. Kuusela, Fogification of electric drives: An industrial use case, in: The 25th International Conference on Emerging Technologies and Factory Automation ETFA2020, 08 Sep 2020, Vienna, Austria, 2020.
    • (2020)
    • Barzegaran, M.1    Desai, N.2    Qian, J.3    Tange, K.4    Zarrin, B.5    Pop, P.6    Kuusela, J.7
  • 4
    • 85087629962 scopus 로고    scopus 로고
    • Central server free federated learning over single-sided trust social networks
    • arXiv preprint
    • He, C., Tan, C., Tang, H., Qiu, S., Liu, J., Central server free federated learning over single-sided trust social networks. 2019 arXiv preprint arXiv:1910.04956.
    • (2019)
    • He, C.1    Tan, C.2    Tang, H.3    Qiu, S.4    Liu, J.5
  • 5
    • 85093456489 scopus 로고    scopus 로고
    • Decentralized online learning: Take benefits from others’ data without sharing your own to track global trend
    • arXiv preprint
    • Zhao, Y., Yu, C., Zhao, P., Tang, H., Qiu, S., Liu, J., Decentralized online learning: Take benefits from others’ data without sharing your own to track global trend. 2019 arXiv preprint arXiv:1901.10593.
    • (2019)
    • Zhao, Y.1    Yu, C.2    Zhao, P.3    Tang, H.4    Qiu, S.5    Liu, J.6
  • 6
    • 85028972554 scopus 로고    scopus 로고
    • Distributed attack detection scheme using deep learning approach for Internet of Things
    • Diro, A.A., Chilamkurti, N., Distributed attack detection scheme using deep learning approach for Internet of Things. Future Gener. Comput. Syst. 82 (2018), 761–768.
    • (2018) Future Gener. Comput. Syst. , vol.82 , pp. 761-768
    • Diro, A.A.1    Chilamkurti, N.2
  • 9
    • 85061175448 scopus 로고    scopus 로고
    • Federated learning with non-iid data
    • arXiv preprint
    • Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V., Federated learning with non-iid data. 2018 arXiv preprint arXiv:1806.00582.
    • (2018)
    • Zhao, Y.1    Li, M.2    Lai, L.3    Suda, N.4    Civin, D.5    Chandra, V.6
  • 10
    • 85081574971 scopus 로고    scopus 로고
    • Active learning solution on distributed edge computing
    • arXiv preprint
    • Qian, J., Sengupta, S., Hansen, L.K., Active learning solution on distributed edge computing. 2019 arXiv preprint arXiv:1906.10718.
    • (2019)
    • Qian, J.1    Sengupta, S.2    Hansen, L.K.3
  • 13
    • 0003619255 scopus 로고    scopus 로고
    • Bias, Variance, and Arcing Classifiers:, Tech. Rep.
    • Tech. Rep. 460, Statistics Department, University of California, Berkeley …
    • Breiman, L., Bias, Variance, and Arcing Classifiers:, Tech. Rep., 1996, Tech. Rep. 460, Statistics Department, University of California, Berkeley ….
    • (1996)
    • Breiman, L.1
  • 14
    • 85055384819 scopus 로고    scopus 로고
    • Ensemble Methods: Foundations and Algorithms
    • CRC press
    • Zhou, Z.-H., Ensemble Methods: Foundations and Algorithms. 2012, CRC press.
    • (2012)
    • Zhou, Z.-H.1
  • 15
    • 84964778324 scopus 로고    scopus 로고
    • Xgboost: extreme gradient boosting
    • R package version 0.4-2
    • Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Xgboost: extreme gradient boosting. 2015, 1–4 R package version 0.4-2.
    • (2015) , pp. 1-4
    • Chen, T.1    He, T.2    Benesty, M.3    Khotilovich, V.4    Tang, Y.5
  • 16
    • 84907030792 scopus 로고    scopus 로고
    • Gradient boosted feature selection
    • Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • Z. Xu, G. Huang, K.Q. Weinberger, A.X. Zheng, Gradient boosted feature selection, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 522–531.
    • (2014) , pp. 522-531
    • Xu, Z.1    Huang, G.2    Weinberger, K.Q.3    Zheng, A.X.4
  • 18
    • 84973924437 scopus 로고    scopus 로고
    • Tracking-by-segmentation with online gradient boosting decision tree
    • Proceedings of the IEEE International Conference on Computer Vision
    • J. Son, I. Jung, K. Park, B. Han, Tracking-by-segmentation with online gradient boosting decision tree, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 3056–3064.
    • (2015) , pp. 3056-3064
    • Son, J.1    Jung, I.2    Park, K.3    Han, B.4
  • 21
    • 85071182490 scopus 로고    scopus 로고
    • Fairness without demographics in repeated loss minimization
    • arXiv preprint
    • Hashimoto, T.B., Srivastava, M., Namkoong, H., Liang, P., Fairness without demographics in repeated loss minimization. 2018 arXiv preprint arXiv:1806.08010.
    • (2018)
    • Hashimoto, T.B.1    Srivastava, M.2    Namkoong, H.3    Liang, P.4
  • 24
    • 85093410352 scopus 로고    scopus 로고
    • Incremental learning in deep convolutional neural networks using partial network sharing
    • Sarwar, S.S., Ankit, A., Roy, K., Incremental learning in deep convolutional neural networks using partial network sharing. IEEE Access, 2019.
    • (2019) IEEE Access
    • Sarwar, S.S.1    Ankit, A.2    Roy, K.3
  • 25
    • 84964923476 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • arXiv preprint
    • Ioffe, S., Szegedy, C., Batch normalization: Accelerating deep network training by reducing internal covariate shift. 2015 arXiv preprint arXiv:1502.03167.
    • (2015)
    • Ioffe, S.1    Szegedy, C.2
  • 26
    • 0037317897 scopus 로고    scopus 로고
    • Efficient greedy learning of Gaussian mixture models
    • Verbeek, J.J., Vlassis, N., Kröse, B., Efficient greedy learning of Gaussian mixture models. Neural Comput. 15:2 (2003), 469–485.
    • (2003) Neural Comput. , vol.15 , Issue.2 , pp. 469-485
    • Verbeek, J.J.1    Vlassis, N.2    Kröse, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.