-
1
-
-
85045348132
-
Federated learning: Strategies for improving communication efficiency
-
arXiv preprint
-
Konečnỳ, J., McMahan, H., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D., Federated learning: Strategies for improving communication efficiency. 2016 arXiv preprint arXiv:1610.05492.
-
(2016)
-
-
Konečnỳ, J.1
McMahan, H.2
Yu, F.X.3
Richtárik, P.4
Suresh, A.T.5
Bacon, D.6
-
2
-
-
85126508923
-
Fogification of electric drives: An industrial use case
-
The 25th International Conference on Emerging Technologies and Factory Automation ETFA2020, 08 Sep 2020, Vienna, Austria.
-
M. Barzegaran, N. Desai, J. Qian, K. Tange, B. Zarrin, P. Pop, J. Kuusela, Fogification of electric drives: An industrial use case, in: The 25th International Conference on Emerging Technologies and Factory Automation ETFA2020, 08 Sep 2020, Vienna, Austria, 2020.
-
(2020)
-
-
Barzegaran, M.1
Desai, N.2
Qian, J.3
Tange, K.4
Zarrin, B.5
Pop, P.6
Kuusela, J.7
-
3
-
-
85084352267
-
A noble double dictionary based ecg compression technique for ioth
-
Qian, J., Tiwari, P., Gochhayat, S.P., Pandey, H.M., A noble double dictionary based ecg compression technique for ioth. IEEE Internet Things J., 2020.
-
(2020)
IEEE Internet Things J.
-
-
Qian, J.1
Tiwari, P.2
Gochhayat, S.P.3
Pandey, H.M.4
-
4
-
-
85087629962
-
Central server free federated learning over single-sided trust social networks
-
arXiv preprint
-
He, C., Tan, C., Tang, H., Qiu, S., Liu, J., Central server free federated learning over single-sided trust social networks. 2019 arXiv preprint arXiv:1910.04956.
-
(2019)
-
-
He, C.1
Tan, C.2
Tang, H.3
Qiu, S.4
Liu, J.5
-
5
-
-
85093456489
-
Decentralized online learning: Take benefits from others’ data without sharing your own to track global trend
-
arXiv preprint
-
Zhao, Y., Yu, C., Zhao, P., Tang, H., Qiu, S., Liu, J., Decentralized online learning: Take benefits from others’ data without sharing your own to track global trend. 2019 arXiv preprint arXiv:1901.10593.
-
(2019)
-
-
Zhao, Y.1
Yu, C.2
Zhao, P.3
Tang, H.4
Qiu, S.5
Liu, J.6
-
6
-
-
85028972554
-
Distributed attack detection scheme using deep learning approach for Internet of Things
-
Diro, A.A., Chilamkurti, N., Distributed attack detection scheme using deep learning approach for Internet of Things. Future Gener. Comput. Syst. 82 (2018), 761–768.
-
(2018)
Future Gener. Comput. Syst.
, vol.82
, pp. 761-768
-
-
Diro, A.A.1
Chilamkurti, N.2
-
7
-
-
85046740096
-
Simple and scalable predictive uncertainty estimation using deep ensembles
-
Lakshminarayanan, B., Pritzel, A., Blundell, C., Simple and scalable predictive uncertainty estimation using deep ensembles. Advances in Neural Information Processing Systems, 2017, 6402–6413.
-
(2017)
Advances in Neural Information Processing Systems
, pp. 6402-6413
-
-
Lakshminarayanan, B.1
Pritzel, A.2
Blundell, C.3
-
9
-
-
85061175448
-
Federated learning with non-iid data
-
arXiv preprint
-
Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V., Federated learning with non-iid data. 2018 arXiv preprint arXiv:1806.00582.
-
(2018)
-
-
Zhao, Y.1
Li, M.2
Lai, L.3
Suda, N.4
Civin, D.5
Chandra, V.6
-
10
-
-
85081574971
-
Active learning solution on distributed edge computing
-
arXiv preprint
-
Qian, J., Sengupta, S., Hansen, L.K., Active learning solution on distributed edge computing. 2019 arXiv preprint arXiv:1906.10718.
-
(2019)
-
-
Qian, J.1
Sengupta, S.2
Hansen, L.K.3
-
11
-
-
85074148647
-
Distributed active learning strategies on edge computing
-
IEEE
-
Qian, J., Gochhayat, S.P., Hansen, L.K., Distributed active learning strategies on edge computing. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), 2019, IEEE, 221–226.
-
(2019)
2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom)
, pp. 221-226
-
-
Qian, J.1
Gochhayat, S.P.2
Hansen, L.K.3
-
12
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15:1 (2014), 1929–1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
13
-
-
0003619255
-
Bias, Variance, and Arcing Classifiers:, Tech. Rep.
-
Tech. Rep. 460, Statistics Department, University of California, Berkeley …
-
Breiman, L., Bias, Variance, and Arcing Classifiers:, Tech. Rep., 1996, Tech. Rep. 460, Statistics Department, University of California, Berkeley ….
-
(1996)
-
-
Breiman, L.1
-
14
-
-
85055384819
-
Ensemble Methods: Foundations and Algorithms
-
CRC press
-
Zhou, Z.-H., Ensemble Methods: Foundations and Algorithms. 2012, CRC press.
-
(2012)
-
-
Zhou, Z.-H.1
-
15
-
-
84964778324
-
Xgboost: extreme gradient boosting
-
R package version 0.4-2
-
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Xgboost: extreme gradient boosting. 2015, 1–4 R package version 0.4-2.
-
(2015)
, pp. 1-4
-
-
Chen, T.1
He, T.2
Benesty, M.3
Khotilovich, V.4
Tang, Y.5
-
16
-
-
84907030792
-
Gradient boosted feature selection
-
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
Z. Xu, G. Huang, K.Q. Weinberger, A.X. Zheng, Gradient boosted feature selection, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 522–531.
-
(2014)
, pp. 522-531
-
-
Xu, Z.1
Huang, G.2
Weinberger, K.Q.3
Zheng, A.X.4
-
17
-
-
84865817062
-
Boosting scalable gradient features for adaptive real-time tracking
-
IEEE
-
Klein, D.A., Cremers, A.B., Boosting scalable gradient features for adaptive real-time tracking. 2011 IEEE International Conference on Robotics and Automation, 2011, IEEE, 4411–4416.
-
(2011)
2011 IEEE International Conference on Robotics and Automation
, pp. 4411-4416
-
-
Klein, D.A.1
Cremers, A.B.2
-
18
-
-
84973924437
-
Tracking-by-segmentation with online gradient boosting decision tree
-
Proceedings of the IEEE International Conference on Computer Vision
-
J. Son, I. Jung, K. Park, B. Han, Tracking-by-segmentation with online gradient boosting decision tree, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 3056–3064.
-
(2015)
, pp. 3056-3064
-
-
Son, J.1
Jung, I.2
Park, K.3
Han, B.4
-
19
-
-
85070206410
-
Client selection for federated learning with heterogeneous resources in mobile edge
-
IEEE
-
Nishio, T., Yonetani, R., Client selection for federated learning with heterogeneous resources in mobile edge. ICC 2019-2019 IEEE International Conference on Communications, ICC, 2019, IEEE, 1–7.
-
(2019)
ICC 2019-2019 IEEE International Conference on Communications, ICC
, pp. 1-7
-
-
Nishio, T.1
Yonetani, R.2
-
20
-
-
85076971892
-
Advances and open problems in federated learning
-
arXiv preprint
-
Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al. Advances and open problems in federated learning. 2019 arXiv preprint arXiv:1912.04977.
-
(2019)
-
-
Kairouz, P.1
McMahan, H.B.2
Avent, B.3
Bellet, A.4
Bennis, M.5
Bhagoji, A.N.6
Bonawitz, K.7
Charles, Z.8
Cormode, G.9
Cummings, R.10
-
21
-
-
85071182490
-
Fairness without demographics in repeated loss minimization
-
arXiv preprint
-
Hashimoto, T.B., Srivastava, M., Namkoong, H., Liang, P., Fairness without demographics in repeated loss minimization. 2018 arXiv preprint arXiv:1806.08010.
-
(2018)
-
-
Hashimoto, T.B.1
Srivastava, M.2
Namkoong, H.3
Liang, P.4
-
23
-
-
85090174813
-
Bayesian batch active learning as sparse subset approximation
-
Pinsler, R., Gordon, J., Nalisnick, E., Hernández-Lobato, J.M., Bayesian batch active learning as sparse subset approximation. Advances in Neural Information Processing Systems, 2019, 6356–6367.
-
(2019)
Advances in Neural Information Processing Systems
, pp. 6356-6367
-
-
Pinsler, R.1
Gordon, J.2
Nalisnick, E.3
Hernández-Lobato, J.M.4
-
24
-
-
85093410352
-
Incremental learning in deep convolutional neural networks using partial network sharing
-
Sarwar, S.S., Ankit, A., Roy, K., Incremental learning in deep convolutional neural networks using partial network sharing. IEEE Access, 2019.
-
(2019)
IEEE Access
-
-
Sarwar, S.S.1
Ankit, A.2
Roy, K.3
-
25
-
-
84964923476
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
arXiv preprint
-
Ioffe, S., Szegedy, C., Batch normalization: Accelerating deep network training by reducing internal covariate shift. 2015 arXiv preprint arXiv:1502.03167.
-
(2015)
-
-
Ioffe, S.1
Szegedy, C.2
-
26
-
-
0037317897
-
Efficient greedy learning of Gaussian mixture models
-
Verbeek, J.J., Vlassis, N., Kröse, B., Efficient greedy learning of Gaussian mixture models. Neural Comput. 15:2 (2003), 469–485.
-
(2003)
Neural Comput.
, vol.15
, Issue.2
, pp. 469-485
-
-
Verbeek, J.J.1
Vlassis, N.2
Kröse, B.3
|