메뉴 건너뛰기




Volumn 12, Issue 14, 2020, Pages

A novel feature extension method for the forest disaster monitoring using multispectral data

Author keywords

Classification; Feature analysis; Forest monitoring; Multispectral remote sensing; Random forest

Indexed keywords

AGGREGATES; DECISION TREES; REMOTE SENSING; TEXTURES;

EID: 85088637231     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs12142261     Document Type: Article
Times cited : (12)

References (55)
  • 1
    • 0344951129 scopus 로고    scopus 로고
    • Effects of fire and torrential rainfall on erosion in a Mediterranean gorse community
    • De Luis, M.; González-Hidalgo, J.; Raventós, J. Effects of fire and torrential rainfall on erosion in a Mediterranean gorse community. Land Degrad. Dev. 2003, 14, 203-213.
    • (2003) Land Degrad. Dev. , vol.14 , pp. 203-213
    • De Luis, M.1    González-Hidalgo, J.2    Raventós, J.3
  • 2
    • 84962498833 scopus 로고    scopus 로고
    • Application of remote sensing in deforestation monitoring: A case study of the Aberdares (Kenya)
    • Marrakech, Morocco, 2-5, December.
    • Ochego, H. Application of remote sensing in deforestation monitoring: A case study of the Aberdares (Kenya). In Proceedings of the 2nd FIG Regional Conference, Marrakech, Morocco, 2-5 December 2003.
    • (2003) In Proceedings of the 2nd FIG Regional Conference
    • Ochego, H.1
  • 3
    • 85069057496 scopus 로고    scopus 로고
    • Assessing the impact of different landscape features on post-fire forest recovery with multitemporal remote sensing data: The case of Mount Taygetos (southern Greece)
    • Christopoulou, A.; Mallinis, G.; Vassilakis, E.; Farangitakis, G.P.; Arianoutsou, M. Assessing the impact of different landscape features on post-fire forest recovery with multitemporal remote sensing data: The case of Mount Taygetos (southern Greece). Int. J. Wildland Fire 2019, 28, 521-532.
    • (2019) Int. J. Wildland Fire , vol.28 , pp. 521-532
    • Christopoulou, A.1    Mallinis, G.2    Vassilakis, E.3    Farangitakis, G.P.4    Arianoutsou, M.5
  • 4
    • 0024196157 scopus 로고
    • Species and stand response to catastrophic wind in central New England, USA
    • Foster, D.R. Species and stand response to catastrophic wind in central New England, USA. J. Ecol. 1988, 76, 135-151.
    • (1988) J. Ecol. , vol.76 , pp. 135-151
    • Foster, D.R.1
  • 5
    • 0344962359 scopus 로고    scopus 로고
    • Spatial pattern analysis of pre-and post-hurricane forest canopy structure in North Carolina, USA
    • Boutet, J.C.; Weishampel, J.F. Spatial pattern analysis of pre-and post-hurricane forest canopy structure in North Carolina, USA. Landsc. Ecol. 2003, 18, 553-559.
    • (2003) Landsc. Ecol. , vol.18 , pp. 553-559
    • Boutet, J.C.1    Weishampel, J.F.2
  • 7
    • 85063695050 scopus 로고    scopus 로고
    • Applicability of Remote Sensing-Based Vegetation Water Content in Modeling Lightning-Caused Forest Fire Occurrences
    • Abdollahi, M.; Dewan, A.; Hassan, Q.K. Applicability of Remote Sensing-Based Vegetation Water Content in Modeling Lightning-Caused Forest Fire Occurrences. Int. J. Geo Inf. 2019, 8, 143.
    • (2019) Int. J. Geo Inf. , vol.8 , pp. 143
    • Abdollahi, M.1    Dewan, A.2    Hassan, Q.K.3
  • 8
    • 85072647371 scopus 로고    scopus 로고
    • Introducing a New Remote Sensing-Based Model for Forecasting Forest Fire Danger Conditions at a Four-Day Scale
    • Ahmed, M.R.; Hassan, Q.K.; Abdollahi, M.; Gupta, A. Introducing a New Remote Sensing-Based Model for Forecasting Forest Fire Danger Conditions at a Four-Day Scale. Remote Sens. 2019, 11, 2101.
    • (2019) Remote Sens. , vol.11 , pp. 2101
    • Ahmed, M.R.1    Hassan, Q.K.2    Abdollahi, M.3    Gupta, A.4
  • 9
    • 79954618062 scopus 로고    scopus 로고
    • Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data
    • Morton, D.C.; DeFries, R.S.; Nagol, J.; Souza, C.M., Jr.; Kasischke, E.S.; Hurtt, G.C.; Dubayah, R. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sens. Environ. 2011, 115, 1706-1720.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 1706-1720
    • Morton, D.C.1    DeFries, R.S.2    Nagol, J.3    Souza, C.M.4    Kasischke, E.S.5    Hurtt, G.C.6    Dubayah, R.7
  • 11
    • 85074514178 scopus 로고    scopus 로고
    • Monitoring forest structure to guide adaptive management of forest restoration: A review of remote sensing approaches
    • Camarretta, N.; Harrison, P.A.; Bailey, T.G.; Potts, B.M.; Hunt, M.A. Monitoring forest structure to guide adaptive management of forest restoration: A review of remote sensing approaches. New For. 2020, 51, 573-596.
    • (2020) New For. , vol.51 , pp. 573-596
    • Camarretta, N.1    Harrison, P.A.2    Bailey, T.G.3    Potts, B.M.4    Hunt, M.A.5
  • 12
    • 84874721318 scopus 로고    scopus 로고
    • Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence
    • Serbin, S.P.; Ahl, D.E.; Gower, S.T. Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence. Remote Sens. Environ. 2013, 133, 71-84.
    • (2013) Remote Sens. Environ. , vol.133 , pp. 71-84
    • Serbin, S.P.1    Ahl, D.E.2    Gower, S.T.3
  • 13
    • 85044455257 scopus 로고    scopus 로고
    • Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques
    • Meng, R.; Wu, J.; Zhao, F.; Cook, B.D.; Hanavan, R.P.; Serbin, S.P. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques. Remote Sens. Environ. 2018, 210, 282-296.
    • (2018) Remote Sens. Environ. , vol.210 , pp. 282-296
    • Meng, R.1    Wu, J.2    Zhao, F.3    Cook, B.D.4    Hanavan, R.P.5    Serbin, S.P.6
  • 14
    • 84905029227 scopus 로고    scopus 로고
    • Object-based change detection in wind-storm damaged forest using high resolution multispectral images
    • Chehata, N.; Orny, C.; Boukir, S.; Guyon, D. Object-based change detection in wind-storm damaged forest using high resolution multispectral images. Int. J. Remote Sens. 2014, 35, 4758-4777.
    • (2014) Int. J. Remote Sens. , vol.35 , pp. 4758-4777
    • Chehata, N.1    Orny, C.2    Boukir, S.3    Guyon, D.4
  • 15
    • 85063199527 scopus 로고    scopus 로고
    • Analysis of forest fire and climate variability using Geospatial Technology for the State of Telangana, India
    • Ahmad, F.; Goparaju, L. Analysis of forest fire and climate variability using Geospatial Technology for the State of Telangana, India. Environ. Socio Econ. Stud. 2019, 7, 24-37.
    • (2019) Environ. Socio Econ. Stud. , vol.7 , pp. 24-37
    • Ahmad, F.1    Goparaju, L.2
  • 16
    • 85022220656 scopus 로고    scopus 로고
    • Soft Computing Techniques for Land Use and Land Cover Monitoring with Multispectral Remote Sensing Images: A Review
    • Thyagharajan, K.K.; Vignesh, T. Soft Computing Techniques for Land Use and Land Cover Monitoring with Multispectral Remote Sensing Images: A Review. Arch. Comput. Methods Eng. 2019, 26, 275-301.
    • (2019) Arch. Comput. Methods Eng. , vol.26 , pp. 275-301
    • Thyagharajan, K.K.1    Vignesh, T.2
  • 17
    • 85080954631 scopus 로고    scopus 로고
    • Multispectral Remote Sensing Data Are Effective and Robust in Mapping Regional Forest Soil Organic Carbon Stocks in a Northeast Forest Region in China
    • Wang, S.; Gao, J.; Zhuang, Q.; Lu, Y.; Jin, X. Multispectral Remote Sensing Data Are Effective and Robust in Mapping Regional Forest Soil Organic Carbon Stocks in a Northeast Forest Region in China. Remote Sens. 2020, 12, 393.
    • (2020) Remote Sens. , vol.12 , pp. 393
    • Wang, S.1    Gao, J.2    Zhuang, Q.3    Lu, Y.4    Jin, X.5
  • 19
    • 85059345478 scopus 로고    scopus 로고
    • Multi-Temporal Forest Cover Change Detection in the Metchie-Ngoum Protection Forest Reserve, West Region of Cameroon
    • Fokeng, R.M.; Forje, W.G.; Meli, V.M.; Bodzemo, B.N. Multi-Temporal Forest Cover Change Detection in the Metchie-Ngoum Protection Forest Reserve, West Region of Cameroon. Egypt. J. Remote Sens. Space Sci. 2019, 23, 113-124.
    • (2019) Egypt. J. Remote Sens. Space Sci. , vol.23 , pp. 113-124
    • Fokeng, R.M.1    Forje, W.G.2    Meli, V.M.3    Bodzemo, B.N.4
  • 20
    • 85041384473 scopus 로고    scopus 로고
    • Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery
    • Zarco-Tejada, P.; Hornero, A.; Hernández-Clemente, R.; Beck, P. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery. ISPRS J. Photogramm. Remote Sens. 2018, 137, 134-148.
    • (2018) ISPRS J. Photogramm. Remote Sens. , vol.137 , pp. 134-148
    • Zarco-Tejada, P.1    Hornero, A.2    Hernández-Clemente, R.3    Beck, P.4
  • 22
    • 85085095632 scopus 로고    scopus 로고
    • Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya
    • Bar, S.; Parida, B.R.; Pandey, A.C. Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sens. Appl. Soc. Environ. 2020, 18, 100324.
    • (2020) Remote Sens. Appl. Soc. Environ. , vol.18 , pp. 100324
    • Bar, S.1    Parida, B.R.2    Pandey, A.C.3
  • 23
    • 84957900257 scopus 로고    scopus 로고
    • Multispectral and texture feature application in image-object analysis of summer vegetation in Eastern Tajikistan Pamirs
    • Salas, E.A.L.; Boykin, K.G.; Valdez, R. Multispectral and texture feature application in image-object analysis of summer vegetation in Eastern Tajikistan Pamirs. Remote Sens. 2016, 8, 78.
    • (2016) Remote Sens. , vol.8 , pp. 78
    • Salas, E.A.L.1    Boykin, K.G.2    Valdez, R.3
  • 28
    • 84922147384 scopus 로고    scopus 로고
    • Integrating multiple texture methods and NDVI to the Random Forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey
    • Akar, Ö.; Güngör, O. Integrating multiple texture methods and NDVI to the Random Forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey. Int. J. Remote Sens. 2015, 36, 442-464.
    • (2015) Int. J. Remote Sens. , vol.36 , pp. 442-464
    • Akar, Ö.1    Güngör, O.2
  • 29
    • 84866437212 scopus 로고    scopus 로고
    • Sloping farmland identification using hierarchical classification in the Xi-He region of China
    • Li, Y.; Gong, J.; Wang, D.; An, L.; Li, R. Sloping farmland identification using hierarchical classification in the Xi-He region of China. Int. J. Remote Sens. 2013, 34, 545-562.
    • (2013) Int. J. Remote Sens. , vol.34 , pp. 545-562
    • Li, Y.1    Gong, J.2    Wang, D.3    An, L.4    Li, R.5
  • 31
    • 0025455577 scopus 로고
    • Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery
    • Marceau, D.J.; Howarth, P.J.; Dubois, J.M.M.; Gratton, D.J. Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery. IEEE Trans. Geosci. Remote Sens. 1990, 28, 513-519.
    • (1990) IEEE Trans. Geosci. Remote Sens. , vol.28 , pp. 513-519
    • Marceau, D.J.1    Howarth, P.J.2    Dubois, J.M.M.3    Gratton, D.J.4
  • 32
    • 77950368692 scopus 로고    scopus 로고
    • Texture-based classification of sub-Antarctic vegetation communities on Heard Island
    • Murray, H.; Lucieer, A.; Williams, R. Texture-based classification of sub-Antarctic vegetation communities on Heard Island. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 138-149.
    • (2010) Int. J. Appl. Earth Obs. Geoinf. , vol.12 , pp. 138-149
    • Murray, H.1    Lucieer, A.2    Williams, R.3
  • 34
    • 13444283842 scopus 로고    scopus 로고
    • The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery
    • Puissant, A.; Hirsch, J.; Weber, C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery. Int. J. Remote Sens. 2005, 26, 733-745.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 733-745
    • Puissant, A.1    Hirsch, J.2    Weber, C.3
  • 35
    • 0034250160 scopus 로고    scopus 로고
    • An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization
    • Dietterich, T. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Mach. Learn. 2000, 40, 139-157.
    • (2000) Mach. Learn. , vol.40 , pp. 139-157
    • Dietterich, T.1
  • 36
    • 85047066347 scopus 로고    scopus 로고
    • Investigation of Training Data Issues in Ensemble Classification Based on Margin Concept
    • Ph.D. Thesis, University of Bordeaux 3, Pessac, France
    • Feng, W. Investigation of Training Data Issues in Ensemble Classification Based on Margin Concept. Application to Land Cover Mapping. Ph.D. Thesis, University of Bordeaux 3, Pessac, France, 2017.
    • (2017) Application to Land Cover Mapping
    • Feng, W.1
  • 37
    • 85071325715 scopus 로고    scopus 로고
    • New margin-based subsampling iterative technique in modified random forests for classification
    • Feng, W.; Dauphin, G.; Huang, W.; Quan, Y.; Liao, W. New margin-based subsampling iterative technique in modified random forests for classification. Knowl. Based Syst. 2019, 182, 104845.
    • (2019) Knowl. Based Syst. , vol.182 , pp. 104845
    • Feng, W.1    Dauphin, G.2    Huang, W.3    Quan, Y.4    Liao, W.5
  • 38
    • 85070566454 scopus 로고    scopus 로고
    • Dynamic Synthetic Minority Over-Sampling Technique-Based Rotation Forest for the Classification of Imbalanced Hyperspectral Data
    • Feng, W.; Dauphin, G.; Huang, W.; Quan, Y.; Bao, W.; Wu, M.; Li, Q. Dynamic Synthetic Minority Over-Sampling Technique-Based Rotation Forest for the Classification of Imbalanced Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2159-2169.
    • (2019) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.12 , pp. 2159-2169
    • Feng, W.1    Dauphin, G.2    Huang, W.3    Quan, Y.4    Bao, W.5    Wu, M.6    Li, Q.7
  • 39
    • 85047080680 scopus 로고    scopus 로고
    • Class Imbalance Ensemble Learning Based on the Margin Theory
    • Feng, W.; Huang, W.; Ren, J. Class Imbalance Ensemble Learning Based on the Margin Theory. Appl. Sci. 2018, 8, 815.
    • (2018) Appl. Sci. , vol.8 , pp. 815
    • Feng, W.1    Huang, W.2    Ren, J.3
  • 40
    • 85081742934 scopus 로고    scopus 로고
    • Trend and forecasting of the COVID-19 outbreak in China
    • Li, Q.; Feng, W.; Quan, Y.H. Trend and forecasting of the COVID-19 outbreak in China. J. Infect. 2020, 80, 469-496.
    • (2020) J. Infect. , vol.80 , pp. 469-496
    • Li, Q.1    Feng, W.2    Quan, Y.H.3
  • 42
    • 85011273268 scopus 로고    scopus 로고
    • Windthrow detection in European forests with very high-resolution optical data
    • Einzmann, K.; Immitzer, M.; Böck, S.; Bauer, O.; Schmitt, A.; Atzberger, C. Windthrow detection in European forests with very high-resolution optical data. Forests 2017, 8, 21.
    • (2017) Forests. , vol.8 , pp. 21
    • Einzmann, K.1    Immitzer, M.2    Böck, S.3    Bauer, O.4    Schmitt, A.5    Atzberger, C.6
  • 43
    • 85034775396 scopus 로고    scopus 로고
    • Developing a random forest algorithm for MODIS global burned area classification
    • Ramo, R.; Chuvieco, E. Developing a random forest algorithm for MODIS global burned area classification. Remote Sens. 2017, 9, 1193.
    • (2017) Remote Sens. , vol.9 , pp. 1193
    • Ramo, R.1    Chuvieco, E.2
  • 45
    • 85088663214 scopus 로고    scopus 로고
    • (accessed on 14 January 2020)
    • Nicolas, J.P. Comm. Affair. Econ. 2009. Available online: https://doi.org/10.1103/PhysRevE.93.023001 (accessed on 14 January 2020).
    • (2009) Comm. Affair. Econ.
    • Nicolas, J.P.1
  • 46
    • 84959435703 scopus 로고    scopus 로고
    • Inventaire Forestier National: Paris, France
    • National Inventaire Forestier National. Tempete Klaus du 24 Janvier 2009; Inventaire Forestier National: Paris, France, 2009.
    • (2009) Tempete Klaus du 24 Janvier 2009
  • 49
    • 79953182966 scopus 로고    scopus 로고
    • Object-based crop identification using multiple vegetation indices, textural features and crop phenology
    • Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301-1316.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 1301-1316
    • Peña-Barragán, J.M.1    Ngugi, M.K.2    Plant, R.E.3    Six, J.4
  • 50
    • 0034627794 scopus 로고    scopus 로고
    • Incorporating texture into classification of forest species composition from airborne multispectral images
    • Franklin, S.; Hall, R.; Moskal, L.; Maudie, A.; Lavigne, M. Incorporating texture into classification of forest species composition from airborne multispectral images. Int. J. Remote Sens. 2000, 21, 61-79.
    • (2000) Int. J. Remote Sens. , vol.21 , pp. 61-79
    • Franklin, S.1    Hall, R.2    Moskal, L.3    Maudie, A.4    Lavigne, M.5
  • 51
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest)
    • Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens. Environ. 2006, 100, 356-362.
    • (2006) Remote Sens. Environ. , vol.100 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 53
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 54
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash, M.; Liu, H. Feature selection for classification. Intell. Data Anal. 1997, 1, 131-156.
    • (1997) Intell. Data Anal. , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.