-
1
-
-
80053617150
-
Z-relation and Homometry in Musical Distributions
-
Agon, Carlos, Emmanuel, Amiot, Moreno, Andreatta, Daniele, Ghisi, and John, Mandereau. 2011. “ Z-relation and Homometry in Musical Distributions.” Journal of Mathematics and Music 5 (2): 83–98. doi: 10.1080/17459737.2011.608819
-
(2011)
Journal of Mathematics and Music
, vol.5
, Issue.2
, pp. 83-98
-
-
Agon, C.1
Amiot, E.2
Andreatta, M.3
Ghisi, D.4
Mandereau, J.5
-
2
-
-
43249133218
-
David Lewin and Maximally Even Sets
-
Amiot, Emmanuel., 2007. “ David Lewin and Maximally Even Sets.” Journal of Mathematics and Music 1 (3): 157–172. doi: 10.1080/17459730701654990
-
(2007)
Journal of Mathematics and Music
, vol.1
, Issue.3
, pp. 157-172
-
-
Amiot, E.1
-
3
-
-
77950719415
-
New Perspectives on Rhythmic Canons and the Spectral Conjecture
-
Amiot, Emmanuel., 2009. “ New Perspectives on Rhythmic Canons and the Spectral Conjecture.” Journal of Mathematics and Music 3 (2): 71–84. doi: 10.1080/17459730903040709
-
(2009)
Journal of Mathematics and Music
, vol.3
, Issue.2
, pp. 71-84
-
-
Amiot, E.1
-
5
-
-
85035092427
-
-
Interval Content vs. DFT. Mexico City, Mexico, edited by Octavio A. Agustín-Aquino, Emilio Lluis-Puebla, and Mariana Montiel, June, 151–166. Springer Verlag
-
Amiot, Emmanuel., 2017. “Interval Content vs. DFT.” In Mathematics and Computation in Music, 6th International Conference, MCM 2017, Mexico City, Mexico, edited by Octavio A. Agustín-Aquino, Emilio Lluis-Puebla, and Mariana Montiel, June, 151–166. Springer Verlag.
-
(2017)
Mathematics and Computation in Music, 6th International Conference, MCM 2017
-
-
Amiot, E.1
-
6
-
-
84857538789
-
An Algebra for Periodic Rhythms and Scales
-
Amiot, Emmanuel, and William, Sethares. 2011. “ An Algebra for Periodic Rhythms and Scales.” Journal of Mathematics and Music 5 (3): 149–169. doi: 10.1080/17459737.2011.640469
-
(2011)
Journal of Mathematics and Music
, vol.5
, Issue.3
, pp. 149-169
-
-
Amiot, E.1
Sethares, W.2
-
7
-
-
85087633687
-
-
Transformée de Fourier Discrète et Structures Musicales. Masters thesis, IRCAM, 4 Place Stravinsky, Paris
-
Beauguitte, Pierre., 2011. “Transformée de Fourier Discrète et Structures Musicales.” Master's thesis, IRCAM, 4 Place Stravinsky, Paris.
-
(2011)
-
-
Beauguitte, P.1
-
8
-
-
0004205706
-
-
New York: University of California Press, Dover
-
Boltzmann, Ludwig., 1995. Lectures on Gas Theory. New York: University of California Press, Dover.
-
(1995)
Lectures on Gas Theory
-
-
Boltzmann, L.1
-
10
-
-
85056005347
-
Information Theory and Music
-
Cohen, Joel., 1962. “ Information Theory and Music.” Behavioral Science 7, 137–163. doi: 10.1002/bs.3830070202
-
(1962)
Behavioral Science
, vol.7
, pp. 137-163
-
-
Cohen, J.1
-
11
-
-
85007235960
-
Repetition and Prominence: The Probabilistic Structure of Melodic and Non-Melodic Lines
-
Duane, Ben., 2016. “ Repetition and Prominence: The Probabilistic Structure of Melodic and Non-Melodic Lines.” Music Perception: An Interdisciplinary Journal 34 (2): 152–166. doi: 10.1525/mp.2016.34.2.152
-
(2016)
Music Perception: An Interdisciplinary Journal
, vol.34
, Issue.2
, pp. 152-166
-
-
Duane, B.1
-
12
-
-
85049933097
-
Exploring the Space of Perfectly Balanced Rhythms and Scales
-
Milne, Andrew J., David, Bulger, and Steffen A., Herff. 2018. “ Exploring the Space of Perfectly Balanced Rhythms and Scales.” Journal of Mathematics and Music 11 (2–3): 101–133. doi: 10.1080/17459737.2017.1395915
-
(2018)
Journal of Mathematics and Music
, vol.11
, Issue.2-3
, pp. 101-133
-
-
Milne, A.J.1
Bulger, D.2
Herff, S.A.3
-
13
-
-
67649903227
-
General Equal-Tempered Harmony
-
Quinn, Ian., 2007. “ General Equal-Tempered Harmony.” Journal of Music Theory 44–45 (2–1).
-
(2007)
Journal of Music Theory
, vol.44-45
, Issue.2-1
-
-
Quinn, I.1
-
14
-
-
84940644968
-
A Mathematical Theory of Communication
-
Shannon, Claude E. 1948. “ A Mathematical Theory of Communication.” Bell System Technical Journal 27, 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x
-
(1948)
Bell System Technical Journal
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
16
-
-
85087607365
-
-
Uniform Information Density Music. Accessed April 13 2020
-
Temperley, David., 2019. “Uniform Information Density in Music.” Accessed April 13 2020. https://mtosmt.org/issues/mto.19.25.2/mto.19.25.2.temperley.html.
-
(2019)
-
-
Temperley, D.1
-
17
-
-
85087652467
-
-
Measuring the Complexity of Musical Rhythm. Ph.D. thesis, Mc Gill University, Montreal, Canada
-
Thul, Eric., 2008. “Measuring the Complexity of Musical Rhythm.” Ph.D. thesis, Mc Gill University, Montreal, Canada.
-
(2008)
-
-
Thul, E.1
-
18
-
-
85087631903
-
-
Some Statistical Properties of Tonality, 1650–1900. Ph.D. thesis, Un. of Yale, New Haven
-
White, Christopher W. M. 2013. “Some Statistical Properties of Tonality, 1650–1900.” Ph.D. thesis, Un. of Yale, New Haven.
-
(2013)
-
-
White, C.W.M.1
-
19
-
-
84949058379
-
-
Applications of DFT to the Theory of Twentieth-Century Harmony. edited by Tom Collins, David Meredith, and Anja Volk, June, 207–218. London: Springer Verlag
-
Yust, Jason., 2015. “Applications of DFT to the Theory of Twentieth-Century Harmony.” In 5th International Conference on Mathematics and Computation in Music, edited by Tom Collins, David Meredith, and Anja Volk, June, 207–218. London: Springer Verlag.
-
(2015)
5th International Conference on Mathematics and Computation in Music
-
-
Yust, J.1
-
20
-
-
84994357470
-
Special Collections: Renewing Set Theory
-
Yust, Jason., 2016. “ Special Collections: Renewing Set Theory.” Journal of Music Theory 60 (2): 213–262. doi: 10.1215/00222909-3651886
-
(2016)
Journal of Music Theory
, vol.60
, Issue.2
, pp. 213-262
-
-
Yust, J.1
|