메뉴 건너뛰기




Volumn , Issue , 2015, Pages 16-24

Enhanced twitter sentiment classification using contextual information

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; CLASSIFICATION (OF INFORMATION); LINGUISTICS; LOCATION; METADATA; SENTIMENT ANALYSIS;

EID: 85085876739     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (27)

References (28)
  • 1
    • 80053418268 scopus 로고    scopus 로고
    • Robust sentiment detection on twitter from biased and noisy data
    • Association for Computational Linguistics
    • Luciano Barbosa and Junlan Feng. 2010. Robust sentiment detection on twitter from biased and noisy data. In Proc. COLING 2010, pages 36-44. Association for Computational Linguistics.
    • (2010) Proc. COLING 2010 , pp. 36-44
    • Barbosa, Luciano1    Feng, Junlan2
  • 3
    • 85113590917 scopus 로고    scopus 로고
    • Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena
    • Johan Bollen, Huina Mao, and Alberto Pepe. 2011. Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In Proc. ICWSM 2011.
    • (2011) Proc. ICWSM 2011
    • Bollen, Johan1    Mao, Huina2    Pepe, Alberto3
  • 4
    • 0033329799 scopus 로고    scopus 로고
    • An empirical study of smoothing techniques for language modeling
    • Stanley F Chen and Joshua Goodman. 1999. An empirical study of smoothing techniques for language modeling. Computer Speech & Language, 13(4):359-393.
    • (1999) Computer Speech & Language , vol.13 , Issue.4 , pp. 359-393
    • Chen, Stanley F1    Goodman, Joshua2
  • 5
    • 79551532379 scopus 로고    scopus 로고
    • Using verbs and adjectives to automatically classify blog sentiment
    • Paula Chesley, Bruce Vincent, Li Xu, and Rohini K Srihari. 2006. Using verbs and adjectives to automatically classify blog sentiment. Training, 580(263):233.
    • (2006) Training , vol.580 , Issue.263 , pp. 233
    • Chesley, Paula1    Vincent, Bruce2    Xu, Li3    Srihari, Rohini K4
  • 6
  • 7
    • 78650882442 scopus 로고    scopus 로고
    • Comparative experiments on sentiment classification for online product reviews
    • Hang Cui, Vibhu Mittal, and Mayur Datar. 2006. Comparative experiments on sentiment classification for online product reviews. In AAAI, volume 6, pages 1265-1270.
    • (2006) AAAI , vol.6 , pp. 1265-1270
    • Cui, Hang1    Mittal, Vibhu2    Datar, Mayur3
  • 8
    • 78650009557 scopus 로고    scopus 로고
    • Twitter content classification
    • Stephen Dann. 2010. Twitter content classification. First Monday, 15(12).
    • (2010) First Monday , vol.15 , Issue.12
    • Dann, Stephen1
  • 9
    • 80053291743 scopus 로고    scopus 로고
    • Enhanced sentiment learning using twitter hashtags and smileys
    • Association for Computational Linguistics
    • Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010. Enhanced sentiment learning using twitter hashtags and smileys. In Proc. COLING 2010, pages 241-249. Association for Computational Linguistics.
    • (2010) Proc. COLING 2010 , pp. 241-249
    • Davidov, Dmitry1    Tsur, Oren2    Rappoport, Ari3
  • 10
    • 77954168866 scopus 로고    scopus 로고
    • Characterizing debate performance via aggregated twitter sentiment
    • ACM
    • Nicholas A Diakopoulos and David A Shamma. 2010. Characterizing debate performance via aggregated twitter sentiment. In Proc. SIGCHI 2010, pages 1195-1198. ACM.
    • (2010) Proc. SIGCHI 2010 , pp. 1195-1198
    • Diakopoulos, Nicholas A1    Shamma, David A2
  • 11
    • 3343019470 scopus 로고
    • Measuring nominal scale agreement among many raters
    • Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters. Psychological bulletin, 76(5):378.
    • (1971) Psychological bulletin , vol.76 , Issue.5 , pp. 378
    • Fleiss, Joseph L1
  • 12
    • 84904002626 scopus 로고    scopus 로고
    • Gallup-Healthways. Well-Being Index
    • Gallup-Healthways. 2014. State of american well-being. Well-Being Index.
    • (2014) State of american well-being
  • 14
  • 15
    • 0023312404 scopus 로고
    • Estimation of probabilities from sparse data for the language model component of a speech recognizer
    • Slava Katz. 1987. Estimation of probabilities from sparse data for the language model component of a speech recognizer. Acoustics, Speech and Signal Processing, IEEE Transactions on, 35(3):400-401.
    • (1987) Acoustics, Speech and Signal Processing, IEEE Transactions on , vol.35 , Issue.3 , pp. 400-401
    • Katz, Slava1
  • 18
    • 85119169802 scopus 로고    scopus 로고
    • Connecting twitter sentiment and expression, demographics, and objective characteristics of place
    • Connecting twitter sentiment and expression, demographics, and objective characteristics of place. PloS one, 8(5):e64417.
    • PloS one , vol.8 , Issue.5 , pp. e64417
  • 20
    • 84858426560 scopus 로고    scopus 로고
    • Dependency tree-based sentiment classification using crfs with hidden variables
    • Association for Computational Linguistics
    • Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi. 2010. Dependency tree-based sentiment classification using crfs with hidden variables. In Proc. NAACL-HLT 2010, pages 786-794. Association for Computational Linguistics.
    • (2010) Proc. NAACL-HLT 2010 , pp. 786-794
    • Nakagawa, Tetsuji1    Inui, Kentaro2    Kurohashi, Sadao3
  • 22
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up?: sentiment classification using machine learning techniques
    • pages Association for Computational Linguistics
    • Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up?: sentiment classification using machine learning techniques. In Proc. EMNLP 2002-Volume 10, pages 79-86. Association for Computational Linguistics.
    • (2002) Proc. EMNLP 2002 , vol.10 , pp. 79-86
    • Pang, Bo1    Lee, Lillian2    Vaithyanathan, Shivakumar3
  • 24
    • 84859916751 scopus 로고    scopus 로고
    • Using emoticons to reduce dependency in machine learning techniques for sentiment classification
    • Association for Computational Linguistics
    • Jonathon Read. 2005. Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In Proceedings of the ACL Student Research Workshop, pages 43-48. Association for Computational Linguistics.
    • (2005) Proceedings of the ACL Student Research Workshop , pp. 43-48
    • Read, Jonathon1
  • 27
    • 83055179484 scopus 로고    scopus 로고
    • Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach
    • ACM
    • Xiaolong Wang, Furu Wei, Xiaohua Liu, Ming Zhou, and Ming Zhang. 2011. Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach. In Proc. CIKM 2011, pages 1031-1040. ACM.
    • (2011) Proc. CIKM 2011 , pp. 1031-1040
    • Wang, Xiaolong1    Wei, Furu2    Liu, Xiaohua3    Zhou, Ming4    Zhang, Ming5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.