메뉴 건너뛰기




Volumn 18, Issue , 2020, Pages

Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya

Author keywords

Burn area; CART; Forest fire; GEE; RF; SVM; Weka clustering

Indexed keywords


EID: 85085095632     PISSN: None     EISSN: 23529385     Source Type: Journal    
DOI: 10.1016/j.rsase.2020.100324     Document Type: Article
Times cited : (116)

References (56)
  • 1
    • 85061447144 scopus 로고    scopus 로고
    • Comparative evaluation of the spectral and spatial consistency of Sentinel-2 and Landsat-8 OLI data for Igneada longos forest
    • Arekhi, M., Goksel, C., Sanli, F.B., Senel, G., Comparative evaluation of the spectral and spatial consistency of Sentinel-2 and Landsat-8 OLI data for Igneada longos forest. ISPRS Int. J. Geo-Inf., 8, 2019, 10.3390/ijgi8020056.
    • (2019) ISPRS Int. J. Geo-Inf. , vol.8
    • Arekhi, M.1    Goksel, C.2    Sanli, F.B.3    Senel, G.4
  • 2
    • 77954829088 scopus 로고    scopus 로고
    • Fire behavior and fire effects across the forest landscape of continental Southeast Asia
    • Springer Berlin Heidelberg Berlin, Heidelberg
    • Baker, P.J., Bunyavejchewin, S., Fire behavior and fire effects across the forest landscape of continental Southeast Asia. Tropical Fire Ecology, 2009, Springer Berlin Heidelberg, Berlin, Heidelberg, 311–334, 10.1007/978-3-540-77381-8_11.
    • (2009) Tropical Fire Ecology , pp. 311-334
    • Baker, P.J.1    Bunyavejchewin, S.2
  • 3
    • 85070305546 scopus 로고    scopus 로고
    • Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal anomalies
    • Belenguer-Plomer, M.A., Tanase, M.A., Fernandez-Carrillo, A., Chuvieco, E., Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal anomalies. Remote Sens. Environ., 233, 2019, 111345, 10.1016/j.rse.2019.111345.
    • (2019) Remote Sens. Environ. , vol.233 , pp. 111345
    • Belenguer-Plomer, M.A.1    Tanase, M.A.2    Fernandez-Carrillo, A.3    Chuvieco, E.4
  • 4
    • 85085126459 scopus 로고    scopus 로고
    • Pattern recognition and machine learning, Antimicrobial agents and chemotherapy
    • Bishop, C.M., Pattern recognition and machine learning, Antimicrobial agents and chemotherapy. https://doi.org/10.1128/AAC.03728-14, 2014.
    • (2014)
    • Bishop, C.M.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn., 5–32, 2001, 10.1023/A:1010933404324.
    • (2001) Mach. Learn. , vol.5-32
    • Breiman, L.1
  • 7
    • 67651174284 scopus 로고    scopus 로고
    • Environmental consequences of the demise in swidden cultivation in southeast asia: carbon storage and soil quality
    • Bruun, T.B., de Neergaard, A., Lawrence, D., Ziegler, A.D., Environmental consequences of the demise in swidden cultivation in southeast asia: carbon storage and soil quality. Hum. Ecol. 37 (2009), 375–388, 10.1007/s10745-009-9257-y.
    • (2009) Hum. Ecol. , vol.37 , pp. 375-388
    • Bruun, T.B.1    de Neergaard, A.2    Lawrence, D.3    Ziegler, A.D.4
  • 10
    • 85049735628 scopus 로고    scopus 로고
    • The utility of Random Forests for wildfire severity mapping
    • Collins, L., Griffioen, P., Newell, G., Mellor, A., The utility of Random Forests for wildfire severity mapping. Remote Sens. Environ. 216 (2018), 374–384, 10.1016/j.rse.2018.07.005.
    • (2018) Remote Sens. Environ. , vol.216 , pp. 374-384
    • Collins, L.1    Griffioen, P.2    Newell, G.3    Mellor, A.4
  • 11
    • 0018653944 scopus 로고
    • Biomass burning as a source of atmospheric gases CO, H2, N 2O, NO, CH3Cl and COS
    • Crutzen, P.J., Heidt, L.E., Krasnec, J.P., Pollock, W.H., Seiler, W., Biomass burning as a source of atmospheric gases CO, H2, N 2O, NO, CH3Cl and COS. Nature 282 (1979), 253–256, 10.1038/282253a0.
    • (1979) Nature , vol.282 , pp. 253-256
    • Crutzen, P.J.1    Heidt, L.E.2    Krasnec, J.P.3    Pollock, W.H.4    Seiler, W.5
  • 12
    • 85060956047 scopus 로고    scopus 로고
    • Forest fire in western himalayas of India: a review
    • Dobriyal, M.J.R., Bijalwan, A., Forest fire in western himalayas of India: a review. New York Sci. J., 10, 2017, 10.7537/marsnys100617.06.
    • (2017) New York Sci. J. , vol.10
    • Dobriyal, M.J.R.1    Bijalwan, A.2
  • 13
    • 37549027220 scopus 로고    scopus 로고
    • Fire severity assessment by using NBR (normalized burn ratio) and NDVI (normalized difference vegetation index) derived from LANDSAT TM/ETM images
    • Escuin, S., Navarro, R., Fernández, P., Fire severity assessment by using NBR (normalized burn ratio) and NDVI (normalized difference vegetation index) derived from LANDSAT TM/ETM images. Int. J. Rem. Sens. 29 (2008), 1053–1073, 10.1080/01431160701281072.
    • (2008) Int. J. Rem. Sens. , vol.29 , pp. 1053-1073
    • Escuin, S.1    Navarro, R.2    Fernández, P.3
  • 14
    • 84855243230 scopus 로고    scopus 로고
    • Assessing the accuracy of remotely sensed data: principles and practices, the photogrammetric record
    • Foody, G., Assessing the accuracy of remotely sensed data: principles and practices, the photogrammetric record. https://doi.org/10.1111/j.1477-9730.2010.00574_2.x, 2010.
    • (2010)
    • Foody, G.1
  • 15
    • 85051622143 scopus 로고    scopus 로고
    • Evaluating the best spectral indices for the detection of burn scars at several post-fire dates in a mountainous region of northwest yunnan, China
    • Fornacca, D., Ren, G., Xiao, W., Evaluating the best spectral indices for the detection of burn scars at several post-fire dates in a mountainous region of northwest yunnan, China. Rem. Sens., 10, 2018, 1196, 10.3390/rs10081196.
    • (2018) Rem. Sens. , vol.10 , pp. 1196
    • Fornacca, D.1    Ren, G.2    Xiao, W.3
  • 17
    • 0030429663 scopus 로고    scopus 로고
    • Ndwi - a normalized difference water index for remote sensing of vegetation liquid water from space
    • Gao, B.C., Ndwi - a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ., 1996, 10.1016/S0034-4257(96)00067-3.
    • (1996) Remote Sens. Environ.
    • Gao, B.C.1
  • 18
    • 33646849812 scopus 로고    scopus 로고
    • MODIS collection 6 active fire product user ’ s guide revision A
    • Giglio, L., MODIS collection 6 active fire product user ’ s guide revision A. https://doi.org/10.1016/j.scitotenv.2016.03.053, 2015.
    • (2015)
    • Giglio, L.1
  • 20
    • 84880121368 scopus 로고    scopus 로고
    • Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4)
    • Giglio, L., Randerson, J.T., Van Der Werf, G.R., Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosciences., 2013, 10.1002/jgrg.20042.
    • (2013) J. Geophys. Res. Biogeosciences.
    • Giglio, L.1    Randerson, J.T.2    Van Der Werf, G.R.3
  • 21
    • 85021781951 scopus 로고    scopus 로고
    • Remote sensing of environment Google earth Engine: planetary-scale geospatial analysis for everyone
    • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., Remote sensing of environment Google earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ., 2017, 10.1016/j.rse.2017.06.031.
    • (2017) Remote Sens. Environ.
    • Gorelick, N.1    Hancher, M.2    Dixon, M.3    Ilyushchenko, S.4    Thau, D.5    Moore, R.6
  • 22
    • 85043384965 scopus 로고    scopus 로고
    • Forest fire burnt area assessment in the biodiversity rich regions using geospatial technology: Uttarakhand forest fire event 2016
    • Gupta, S., Roy, A., Bhavsar, D., Kala, R., Singh, S., Kumar, A.S., Forest fire burnt area assessment in the biodiversity rich regions using geospatial technology: Uttarakhand forest fire event 2016. J. Indian Soc. Remote Sens. 46 (2018), 945–955, 10.1007/s12524-018-0757-3.
    • (2018) J. Indian Soc. Remote Sens. , vol.46 , pp. 945-955
    • Gupta, S.1    Roy, A.2    Bhavsar, D.3    Kala, R.4    Singh, S.5    Kumar, A.S.6
  • 23
    • 85019674484 scopus 로고    scopus 로고
    • Separability analysis of sentinel-2A multi-spectral instrument (MSI) data for burned area discrimination
    • Huang, H., Roy, D., Boschetti, L., Zhang, H., Yan, L., Kumar, S., Gomez-Dans, J., Li, J., Separability analysis of sentinel-2A multi-spectral instrument (MSI) data for burned area discrimination. Rem. Sens., 8, 2016, 873, 10.3390/rs8100873.
    • (2016) Rem. Sens. , vol.8 , pp. 873
    • Huang, H.1    Roy, D.2    Boschetti, L.3    Zhang, H.4    Yan, L.5    Kumar, S.6    Gomez-Dans, J.7    Li, J.8
  • 24
    • 82055173070 scopus 로고    scopus 로고
    • On the terminology of the spectral vegetation index (NIR - SWIR)/(NIR+SWIR)
    • Ji, L., Zhang, L., Wylie, B.K., Rover, J., On the terminology of the spectral vegetation index (NIR - SWIR)/(NIR+SWIR). Int. J. Rem. Sens. 32 (2011), 6901–6909, 10.1080/01431161.2010.510811.
    • (2011) Int. J. Rem. Sens. , vol.32 , pp. 6901-6909
    • Ji, L.1    Zhang, L.2    Wylie, B.K.3    Rover, J.4
  • 25
    • 67349108087 scopus 로고    scopus 로고
    • Forest fire in India: a review of the knowledge base
    • Joseph, S., Anitha, K., Murthy, M.S.R., Forest fire in India: a review of the knowledge base. J. For. Res. 14 (2009), 127–134, 10.1007/s10310-009-0116-x.
    • (2009) J. For. Res. , vol.14 , pp. 127-134
    • Joseph, S.1    Anitha, K.2    Murthy, M.S.R.3
  • 26
    • 56449115820 scopus 로고    scopus 로고
    • Vegetation fire emissions and their impact on air pollution and climate
    • Langmann, B., Duncan, B., Textor, C., Trentmann, J., van der Werf, G.R., Vegetation fire emissions and their impact on air pollution and climate. Atmos. Environ. 43 (2009), 107–116, 10.1016/j.atmosenv.2008.09.047.
    • (2009) Atmos. Environ. , vol.43 , pp. 107-116
    • Langmann, B.1    Duncan, B.2    Textor, C.3    Trentmann, J.4    van der Werf, G.R.5
  • 28
    • 85065013917 scopus 로고    scopus 로고
    • Comparing Sentinel-2 MSI and Landsat 8 OLI imagery for monitoring selective logging in the Brazilian Amazon
    • Lima, T.A., Beuchle, R., Langner, A., Grecchi, R.C., Griess, V.C., Achard, F., Comparing Sentinel-2 MSI and Landsat 8 OLI imagery for monitoring selective logging in the Brazilian Amazon. Rem. Sens., 2019, 10.3390/rs11080922.
    • (2019) Rem. Sens.
    • Lima, T.A.1    Beuchle, R.2    Langner, A.3    Grecchi, R.C.4    Griess, V.C.5    Achard, F.6
  • 29
    • 85062964075 scopus 로고    scopus 로고
    • 30 m resolution global annual burned area mapping based on landsat images and Google earth engine
    • Long, T., Zhang, Z., He, G., Jiao, W., Tang, C., Wu, B., Zhang, X., Wang, G., Yin, R., 30 m resolution global annual burned area mapping based on landsat images and Google earth engine. Rem. Sens., 11, 2019, 489, 10.3390/rs11050489.
    • (2019) Rem. Sens. , vol.11 , pp. 489
    • Long, T.1    Zhang, Z.2    He, G.3    Jiao, W.4    Tang, C.5    Wu, B.6    Zhang, X.7    Wang, G.8    Yin, R.9
  • 30
    • 84904809335 scopus 로고    scopus 로고
    • Changing glacial lakes and associated outburst floods risks in Nanda Devi Biosphere Reserve, Indian Himalaya
    • Mal, S., Singh, R.B., Changing glacial lakes and associated outburst floods risks in Nanda Devi Biosphere Reserve, Indian Himalaya. IAHS-AISH Proceedings and Reports, 2014.
    • (2014) IAHS-AISH Proceedings and Reports
    • Mal, S.1    Singh, R.B.2
  • 31
    • 85025134664 scopus 로고    scopus 로고
    • Evaluating and comparing sentinel 2A and landsat-8 operational land imager (OLI) spectral indices for estimating fire severity in a mediterranean pine ecosystem of Greece
    • Mallinis, G., Mitsopoulos, I., Chrysafi, I., Evaluating and comparing sentinel 2A and landsat-8 operational land imager (OLI) spectral indices for estimating fire severity in a mediterranean pine ecosystem of Greece. GIScience Remote Sens. 55 (2018), 1–18, 10.1080/15481603.2017.1354803.
    • (2018) GIScience Remote Sens. , vol.55 , pp. 1-18
    • Mallinis, G.1    Mitsopoulos, I.2    Chrysafi, I.3
  • 33
    • 85041539910 scopus 로고    scopus 로고
    • Assessment of increasing threat of forest fires in Uttarakhand, using remote sensing and gis techniques
    • Negi, M.S., Kumar, A., Assessment of increasing threat of forest fires in Uttarakhand, using remote sensing and gis techniques. Glob. J. Adv. Res. 3 (2016), 457–468.
    • (2016) Glob. J. Adv. Res. , vol.3 , pp. 457-468
    • Negi, M.S.1    Kumar, A.2
  • 34
    • 85047670455 scopus 로고
    • Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie
    • Ojima, D.S., Schimel, D.S., Parton, W.J., Owensby, C.E., Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry, 1994, 10.1007/BF02584486.
    • (1994) Biogeochemistry
    • Ojima, D.S.1    Schimel, D.S.2    Parton, W.J.3    Owensby, C.E.4
  • 35
    • 85027956544 scopus 로고    scopus 로고
    • Assessment of VIIRS 375m active fire detection product for direct burned area mapping
    • Oliva, P., Schroeder, W., Assessment of VIIRS 375m active fire detection product for direct burned area mapping. Remote Sens. Environ., 160, 2015, 10.1016/j.rse.2015.01.010.
    • (2015) Remote Sens. Environ. , vol.160
    • Oliva, P.1    Schroeder, W.2
  • 36
    • 85026743681 scopus 로고    scopus 로고
    • The ESA climate change initiative (CCI): a European contribution to the generation of the global climate observing System
    • Plummer, S., Lecomte, P., Doherty, M., The ESA climate change initiative (CCI): a European contribution to the generation of the global climate observing System. Remote Sens. Environ., 2017, 10.1016/j.rse.2017.07.014.
    • (2017) Remote Sens. Environ.
    • Plummer, S.1    Lecomte, P.2    Doherty, M.3
  • 39
    • 84948994642 scopus 로고    scopus 로고
    • Nationwide classification of forest types of India using remote sensing and Nationwide classification of forest types of India using remote sensing and GIS
    • Reddy, C.S., Jha, C.S., Diwakar, P.G., Dadhwal, V.K., Nationwide classification of forest types of India using remote sensing and Nationwide classification of forest types of India using remote sensing and GIS. https://doi.org/10.1007/s10661-015-4990-8, 2015.
    • (2015)
    • Reddy, C.S.1    Jha, C.S.2    Diwakar, P.G.3    Dadhwal, V.K.4
  • 40
    • 85058934529 scopus 로고    scopus 로고
    • Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa
    • Roteta, E., Bastarrika, A., Padilla, M., Storm, T., Chuvieco, E., Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 222 (2019), 1–17, 10.1016/j.rse.2018.12.011.
    • (2019) Remote Sens. Environ. , vol.222 , pp. 1-17
    • Roteta, E.1    Bastarrika, A.2    Padilla, M.3    Storm, T.4    Chuvieco, E.5
  • 41
    • 85068583922 scopus 로고    scopus 로고
    • Landsat-8 and Sentinel-2 burned area mapping - a combined sensor multi-temporal change detection approach
    • Roy, D.P., Huang, H., Boschetti, L., Giglio, L., Yan, L., Zhang, H.H., Li, Z., Landsat-8 and Sentinel-2 burned area mapping - a combined sensor multi-temporal change detection approach. Remote Sens. Environ., 231, 2019, 111254, 10.1016/j.rse.2019.111254.
    • (2019) Remote Sens. Environ. , vol.231 , pp. 111254
    • Roy, D.P.1    Huang, H.2    Boschetti, L.3    Giglio, L.4    Yan, L.5    Zhang, H.H.6    Li, Z.7
  • 43
    • 80155175727 scopus 로고    scopus 로고
    • Forest fire and degradation assessment using satellite remote sensing and geographic information System
    • Roy, P.S., Forest fire and degradation assessment using satellite remote sensing and geographic information System. Satell. Remote Sens. GIS Appl. Agric. Meteorol., 2005, 361–400.
    • (2005) Satell. Remote Sens. GIS Appl. Agric. Meteorol. , pp. 361-400
    • Roy, P.S.1
  • 46
    • 85074133600 scopus 로고    scopus 로고
    • NASA VIIRS Land Science Investigator Processing System (SIPS) Visible Infrared Imaging Radiometer Suite (VIIRS) 375 M & 750 M Active Fire Products: Product User's Guide
    • Schroeder, W., Giglio, L., NASA VIIRS Land Science Investigator Processing System (SIPS) Visible Infrared Imaging Radiometer Suite (VIIRS) 375 M & 750 M Active Fire Products: Product User's Guide. 2018 Version 1.4.
    • (2018)
    • Schroeder, W.1    Giglio, L.2
  • 47
    • 85019930085 scopus 로고    scopus 로고
    • Exploring Google earth engine platform for big data processing: classification of multi-temporal satellite imagery for crop mapping
    • Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., Skakun, S., Exploring Google earth engine platform for big data processing: classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci. 5 (2017), 1–10, 10.3389/feart.2017.00017.
    • (2017) Front. Earth Sci. , vol.5 , pp. 1-10
    • Shelestov, A.1    Lavreniuk, M.2    Kussul, N.3    Novikov, A.4    Skakun, S.5
  • 48
    • 20444375159 scopus 로고    scopus 로고
    • Comparison of burned area estimates derived from SPOT-VEGETATION and Landsat ETM+ data in Africa: influence of spatial pattern and vegetation type
    • Silva, J.M.N., Sá, A.C.L., Pereira, J.M.C., Comparison of burned area estimates derived from SPOT-VEGETATION and Landsat ETM+ data in Africa: influence of spatial pattern and vegetation type. Remote Sens. Environ. 96 (2005), 188–201, 10.1016/j.rse.2005.02.004.
    • (2005) Remote Sens. Environ. , vol.96 , pp. 188-201
    • Silva, J.M.N.1    Sá, A.C.L.2    Pereira, J.M.C.3
  • 49
    • 84904580217 scopus 로고    scopus 로고
    • Trends and variability of monsoon and other rainfall seasons in Western Himalaya, India
    • Singh, R.B., Mal, S., Trends and variability of monsoon and other rainfall seasons in Western Himalaya, India. Atmos. Sci. Lett. 15 (2014), 218–226, 10.1002/asl2.494.
    • (2014) Atmos. Sci. Lett. , vol.15 , pp. 218-226
    • Singh, R.B.1    Mal, S.2
  • 50
    • 0031255580 scopus 로고    scopus 로고
    • Selecting and interpreting measures of thematic classification accuracy
    • Stehman, S.V., Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 62 (1997), 77–89, 10.1016/S0034-4257(97)00083-7.
    • (1997) Remote Sens. Environ. , vol.62 , pp. 77-89
    • Stehman, S.V.1
  • 51
    • 84986877447 scopus 로고    scopus 로고
    • Forest fire risk modeling in Uttarakhand Himalaya using TERRA satellite datasets
    • Suresh Babu, K.V., Roy, A., Prasad, P.R., Forest fire risk modeling in Uttarakhand Himalaya using TERRA satellite datasets. Eur. J. Remote Sens. 49 (2016), 381–395, 10.5721/EuJRS20164921.
    • (2016) Eur. J. Remote Sens. , vol.49 , pp. 381-395
    • Suresh Babu, K.V.1    Roy, A.2    Prasad, P.R.3
  • 52
    • 85065787745 scopus 로고    scopus 로고
    • Trends in vegetation fires in south and southeast asian countries
    • Vadrevu, K.P., Lasko, K., Giglio, L., Schroeder, W., Biswas, S., Justice, C., Trends in vegetation fires in south and southeast asian countries. Sci. Rep. 9 (2019), 1–13, 10.1038/s41598-019-43940-x.
    • (2019) Sci. Rep. , vol.9 , pp. 1-13
    • Vadrevu, K.P.1    Lasko, K.2    Giglio, L.3    Schroeder, W.4    Biswas, S.5    Justice, C.6
  • 54
    • 0003957032 scopus 로고    scopus 로고
    • Data Mining: Practical Machine Learning Tools and Techniques (Google eBook), Complementary Literature None
    • Witten, I.H., Frank, E., Hall, M. a, Data Mining: Practical Machine Learning Tools and Techniques (Google eBook), Complementary Literature None. 2011.
    • (2011)
    • Witten, I.H.1    Frank, E.2    Hall, M.A.3
  • 55
    • 0038267579 scopus 로고    scopus 로고
    • Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products
    • Wooster, M., Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens. Environ. 86 (2003), 83–107, 10.1016/S0034-4257(03)00070-1.
    • (2003) Remote Sens. Environ. , vol.86 , pp. 83-107
    • Wooster, M.1
  • 56
    • 85021707297 scopus 로고    scopus 로고
    • Significant remote sensing vegetation indices: a review of developments and applications
    • Xue, J., Su, B., Significant remote sensing vegetation indices: a review of developments and applications. J. Sensors, 2017, 2017, 10.1155/2017/1353691.
    • (2017) J. Sensors , vol.2017
    • Xue, J.1    Su, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.