메뉴 건너뛰기




Volumn 52, Issue 4, 2017, Pages 615-629

Neurosurgeon: Collaborative intelligence between the cloud and mobile edge

Author keywords

Cloud computing; Deep neural networks; Intelligent applications; Mobile computing

Indexed keywords

DEEP NEURAL NETWORKS; ENERGY EFFICIENCY; ENERGY UTILIZATION; LEARNING SYSTEMS; MOBILE TELECOMMUNICATION SYSTEMS; MULTILAYER NEURAL NETWORKS; NETWORK LAYERS; WIRELESS NETWORKS;

EID: 85084520597     PISSN: 15232867     EISSN: None     Source Type: Journal    
DOI: 10.1145/3037697.3037698     Document Type: Article
Times cited : (875)

References (58)
  • 1
    • 85084450285 scopus 로고    scopus 로고
    • Accessed: 2017-01
    • Wearables market to be worth $25 billion by 2019. http://www.ccsinsight.com/press/company-news/2332-wearables-market-to-be-worth-25-billion-by-2019-reveals-ccs-insight. Accessed: 2017-01.
    • (2019) Wearables Market to Be Worth $25 Billion by
  • 2
    • 85084496754 scopus 로고    scopus 로고
    • Rapid expansion projected for smart home devices
    • Accessed: 2017-01
    • Rapid Expansion Projected for Smart Home Devices, IHS Markit Says. http://news.ihsmarkit.com/press-release/technology/rapid-expansion-projected-smart-home-devices-ihs-markit-says. Accessed: 2017-01.
    • IHS Markit Says
  • 3
    • 85021871728 scopus 로고    scopus 로고
    • Accessed: 2016-08
    • Intelligent Virtual Assistant Market Worth $3.07Bn By 2020. https://globenewswire.com/news-release/2015/12/17/796353/0/en/Intelligent-Virtual-Assistant-Market-Worth-3-07Bn-By-2020.html. Accessed: 2016-08.
    • Intelligent Virtual Assistant Market Worth $3.07Bn by 2020
  • 6
    • 85052327703 scopus 로고    scopus 로고
    • Accessed: 2017-01
    • Google Brain. https://backchannel.com/google-search-will-be-your-next-brain-5207c26e4523#.x9n2ajota. Accessed: 2017-01.
    • Google Brain
  • 8
    • 85084451985 scopus 로고    scopus 로고
    • Accessed: 2016-08
    • Baidu Supercomputer. https://gigaom.com/2015/01/14/baidu-has-built-A-supercomputer-for-deep-learning/. Accessed: 2016-08.
    • Baidu Supercomputer
  • 14
    • 84965072162 scopus 로고    scopus 로고
    • Mobile cpu's rise to power: Quantifying the impact of generational mobile cpu design trends on performance, energy, and user satisfaction
    • Matthew Halpern, Yuhao Zhu, and Vijay Janapa Reddi. Mobile cpu's rise to power: Quantifying the impact of generational mobile cpu design trends on performance, energy, and user satisfaction. In High Performance Computer Architecture (HPCA), 2016 IEEE International Symposium on, pages 64-76. IEEE, 2016.
    • (2016) High Performance Computer Architecture (HPCA) 2016 IEEE International Symposium on , pp. 64-76
    • Halpern, M.1    Zhu, Y.2    Janapa Reddi, V.3
  • 15
    • 85021977910 scopus 로고    scopus 로고
    • Technical report. Accessed: 2017-01
    • Whitepaper: NVIDIA Tegra X1. Technical report. Accessed: 2017-01.
    • Whitepaper: NVIDIA Tegra X1
  • 24
    • 84924347179 scopus 로고    scopus 로고
    • Accessed: 2015-05
    • Watts Up? Power Meter. https://www.wattsupmeters.com/. Accessed: 2015-05.
    • Watts Up? Power Meter
  • 32
    • 84905445838 scopus 로고    scopus 로고
    • Towards energy proportionality for large-scale latency-critical workloads
    • IEEE Press
    • David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Bar-roso, and Christos Kozyrakis. Towards energy proportionality for large-scale latency-critical workloads. In ACM SIGARCH Computer Architecture News, volume 42, pages 301-312. IEEE Press, 2014.
    • (2014) ACM SIGARCH Computer Architecture News , vol.42 , pp. 301-312
    • Lo, D.1    Cheng, L.2    Govindaraju, R.3    Barroso, L.A.4    Kozyrakis, C.5
  • 33
    • 78650090801 scopus 로고    scopus 로고
    • Thrift: Scalable cross-language services implementation
    • Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable cross-language services implementation. Facebook White Paper, 5(8), 2007.
    • (2007) Facebook White Paper , vol.5 , Issue.8
    • Slee, M.1    Agarwal, A.2    Kwiatkowski, M.3
  • 48
    • 84937683341 scopus 로고    scopus 로고
    • Smite: Precise qos prediction on real system smt processors to improve utilization in warehouse scale computers
    • Yunqi Zhang, Michael A. Laurenzano, Jason Mars, and Lingjia Tang. Smite: Precise qos prediction on real system smt processors to improve utilization in warehouse scale computers. In International Symposium on Microarchitecture (MICRO), 2014.
    • (2014) International Symposium on Microarchitecture (MICRO
    • Zhang, Y.1    Laurenzano, M.A.2    Mars, J.3    Tang, L.4
  • 49
    • 85101488444 scopus 로고    scopus 로고
    • Baymax: Qos awareness and increased utilization for non-preemptive accelerators in warehouse scale computers
    • Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. Baymax: Qos awareness and increased utilization for non-preemptive accelerators in warehouse scale computers. In ACM SIGPLAN Notices, volume 51, pages 681-696. ACM, 2016.
    • (2016) ACM SIGPLAN Notices , vol.51 , pp. 681-696
    • Chen, Q.1    Yang, H.2    Mars, J.3    Tang, L.4
  • 56
    • 84906251664 scopus 로고    scopus 로고
    • Accurate and compact large vocabulary speech recognition on mobile devices
    • Xin Lei, Andrew Senior, Alexander Gruenstein, and Jeffrey Sorensen. Accurate and Compact Large vocabulary speech recognition on mobile devices. In INTERSPEECH, pages 662-665, 2013.
    • (2013) INTERSPEECH , pp. 662-665
    • Lei, X.1    Senior, A.2    Gruenstein, A.3    Sorensen, J.4
  • 57
    • 84906251664 scopus 로고    scopus 로고
    • Accurate and compact large vocabulary speech recognition on mobile devices
    • Xin Lei, Andrew Senior, Alexander Gruenstein, and Jeffrey Sorensen. Accurate and compact large vocabulary speech recognition on mobile devices. In INTERSPEECH, pages 662-665, 2013.
    • (2013) INTERSPEECH , pp. 662-665
    • Lei, X.1    Senior, A.2    Gruenstein, A.3    Sorensen, J.4
  • 58
    • 85021864055 scopus 로고    scopus 로고
    • Mcdnn: An execution framework for deep neural networks on resource-constrained devices
    • Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wolman, and Arvind Krishnamurthy. Mcdnn: An execution framework for deep neural networks on resource-constrained devices. In MobiSys, 2016.
    • (2016) MobiSys
    • Han, S.1    Shen, H.2    Philipose, M.3    Agarwal, S.4    Wolman, A.5    Krishnamurthy, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.