-
1
-
-
84995527907
-
Deep learning with differential privacy
-
ACM
-
ABADI, M., CHU, A., GOODFELLOW, I., MCMAHAN, H. B., MIRONOV, I., TALWAR, K., AND ZHANG, L. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (2016), CCS’16, ACM, pp. 308–318.
-
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (2016), CCS’16
, pp. 308-318
-
-
Abadi, M.1
Chu, A.2
Goodfellow, I.3
McMahan, H.B.4
Mironov, I.5
Talwar, K.6
Zhang, L.7
-
2
-
-
84994574463
-
-
Tech. rep., CMU-CS-16-118, CMU School of Computer Science
-
AMOS, B., LUDWICZUK, B., AND SATYANARAYANAN, M. Openface: A general-purpose face recognition library with mobile applications. Tech. rep., CMU-CS-16-118, CMU School of Computer Science, 2016.
-
(2016)
Openface: A General-Purpose Face Recognition Library with Mobile Applications
-
-
Amos, B.1
Ludwiczuk, B.2
Satyanarayanan, M.3
-
3
-
-
85041432607
-
Practical secure aggregation for privacy-preserving machine learning
-
CCS’17, ACM
-
BONAWITZ, K., IVANOV, V., KREUTER, B., MARCEDONE, A., MCMAHAN, H. B., PATEL, S., RAMAGE, D., SEGAL, A., AND SETH, K. Practical secure aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (2017), CCS’17, ACM, pp. 1175–1191.
-
(2017)
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security
, pp. 1175-1191
-
-
Bonawitz, K.1
Ivanov, V.2
Kreuter, B.3
Marcedone, A.4
McMahan, H.B.5
Patel, S.6
Ramage, D.7
Segal, A.8
Seth, K.9
-
4
-
-
84905991151
-
The algorithmic foundations of differential privacy
-
DWORK, C., AND ROTH, A. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9 (2014), 211–407.
-
(2014)
Found. Trends Theor. Comput. Sci.
, vol.9
, pp. 211-407
-
-
Dwork, C.1
Roth, A.2
-
5
-
-
78751522594
-
Boosting and differential privacy
-
DWORK, C., ROTHBLUM, G. N., AND VADHAN, S. Boosting and differential privacy. In IEEE FOCS (2010), pp. 51–60.
-
(2010)
IEEE FOCS
, pp. 51-60
-
-
Dwork, C.1
Rothblum, G.N.2
Vadhan, S.3
-
6
-
-
84954097669
-
Model inversion attacks that exploit confidence information and basic countermeasures
-
CCS’15, ACM
-
FREDRIKSON, M., JHA, S., AND RISTENPART, T. Model inversion attacks that exploit confidence information and basic countermeasures. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security (2015), CCS’15, ACM, pp. 1322–1333.
-
(2015)
Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security
, pp. 1322-1333
-
-
Fredrikson, M.1
Jha, S.2
Ristenpart, T.3
-
7
-
-
85041437863
-
Deep models under the gan: Information leakage from collaborative deep learning
-
New York, NY, USA, CCS’17, ACM
-
HITAJ, B., ATENIESE, G., AND PEREZ-CRUZ, F. Deep models under the gan: Information leakage from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (New York, NY, USA, 2017), CCS’17, ACM, pp. 603–618.
-
(2017)
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security
, pp. 603-618
-
-
Hitaj, B.1
Ateniese, G.2
Perez-Cruz, F.3
-
8
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet classification with deep convolutional neural networks. In NIPS (2012), pp. 1097–1105.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
10
-
-
80052663001
-
Differentially private data release for data mining
-
MOHAMMED, N., CHEN, R., FUNG, B. C., AND YU, P. S. Differentially private data release for data mining. In ACM KDD (2011), pp. 493–501.
-
(2011)
ACM KDD
, pp. 493-501
-
-
Mohammed, N.1
Chen, R.2
Fung, B.C.3
Yu, P.S.4
-
11
-
-
85047726837
-
-
ArXiv e-prints
-
OSIA, S. A., SHAHIN SHAMSABADI, A., TAHERI, A., RABIEE, H. R., LANE, N. D., AND HADDADI, H. A hybrid deep learning architecture for privacy-preserving mobile analytics. ArXiv e-prints (2017).
-
(2017)
A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics
-
-
Osia, S.A.1
Shahin Shamsabadi, A.2
Taheri, A.3
Rabiee, H.R.4
Lane, N.D.5
Haddadi, H.6
-
12
-
-
84978681252
-
Deep face recognition
-
PARKHI, O. M., VEDALDI, A., AND ZISSERMAN, A. Deep face recognition. In Proceedings of the British Machine Vision Conference (2015), pp. 41.1–41.12.
-
(2015)
Proceedings of the British Machine Vision Conference
, pp. 41.1-41.12
-
-
Parkhi, O.M.1
Vedaldi, A.2
Zisserman, A.3
-
13
-
-
84954108845
-
Privacy-preserving deep learning
-
CCS’15, ACM
-
SHOKRI, R., AND SHMATIKOV, V. Privacy-preserving deep learning. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security (2015), CCS’15, ACM, pp. 1310–1321.
-
(2015)
Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security
, pp. 1310-1321
-
-
Shokri, R.1
Shmatikov, V.2
-
14
-
-
85024479480
-
Membership inference attacks against machine learning models
-
May
-
SHOKRI, R., STRONATI, M., SONG, C., AND SHMATIKOV, V. Membership inference attacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP) (May 2017), pp. 3–18.
-
(2017)
2017 IEEE Symposium on Security and Privacy (SP)
, pp. 3-18
-
-
Shokri, R.1
Stronati, M.2
Song, C.3
Shmatikov, V.4
-
15
-
-
84951050684
-
A survey of fog computing: Concepts, applications and issues
-
YI, S., LI, C., AND LI, Q. A survey of fog computing: Concepts, applications and issues. In Workshop on Mobile Big Data (2015), pp. 37–42.
-
(2015)
Workshop on Mobile Big Data
, pp. 37-42
-
-
Yi, S.1
Li, C.2
Li, Q.3
-
16
-
-
84937508363
-
How transferable are features in deep neural networks?
-
YOSINSKI, J., CLUNE, J., BENGIO, Y., AND LIPSON, H. How transferable are features in deep neural networks? In NIPS (2014), pp. 3320–3328.
-
(2014)
NIPS
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
|