-
2
-
-
85077745224
-
-
Apache. Internet draft
-
Apache. airflow. Internet draft, 2017.
-
(2017)
Airflow
-
-
-
3
-
-
85077754550
-
-
Apache. Internet draft
-
Apache. flink. Internet draft, 2017.
-
(2017)
Flink
-
-
-
5
-
-
85077760702
-
-
Dataiku, 2018. https://www.dataiku.com.
-
(2018)
Dataiku
-
-
-
6
-
-
85048242870
-
-
Microsoft azure, 2018. https://azure.microsoft.com.
-
(2018)
Microsoft Azure
-
-
-
7
-
-
85077736099
-
-
Pipelineai, 2018. https://pipeline.ai.
-
(2018)
-
-
-
9
-
-
84973926638
-
Toward a robust sparse data representation for wireless sensor networks
-
Washington, DC, USA, IEEE Computer Society
-
ALSHEIKH, M. A., LIN, S., TAN, H.-P., AND NIYATO, D. Toward a robust sparse data representation for wireless sensor networks. In Proceedings of the 2015 IEEE 40th Conference on Local Computer Networks (LCN 2015) (Washington, DC, USA, 2015), LCN’15, IEEE Computer Society, pp. 117–124.
-
(2015)
Proceedings of the 2015 IEEE 40th Conference on Local Computer Networks (LCN 2015) (Washington, DC, USA, 2015), LCN’15
, pp. 117-124
-
-
Alsheikh, M.A.1
Lin, S.2
Tan, H.-P.3
Niyato, D.4
-
10
-
-
85077736512
-
-
AMAZON
-
AMAZON. Internet Draft, 2018.
-
(2018)
Internet Draft
-
-
-
11
-
-
77956877124
-
The internet of things: A survey
-
Oct
-
ATZORI, L., IERA, A., AND MORABITO, G. The internet of things: A survey. Comput. Netw. 54, 15 (Oct. 2010), 2787–2805.
-
(2010)
Comput. Netw.
, vol.54
, Issue.15
, pp. 2787-2805
-
-
Atzori, L.1
Iera, A.2
Morabito, G.3
-
12
-
-
85029121317
-
TFX: A tensorflow-based production-scale machine learning platform
-
New York, NY, USA, ACM
-
BAYLOR, D., BRECK, E., CHENG, H.-T., FIEDEL, N., FOO, C. Y., HAQUE, Z., HAYKAL, S., ISPIR, M., JAIN, V., KOC, L., KOO, C. Y., LEW, L., MEWALD, C., MODI, A. N., POLYZOTIS, N., RAMESH, S., ROY, S., WHANG, S. E., WICKE, M., WILKIEWICZ, J., ZHANG, X., AND ZINKEVICH, M. Tfx: A tensorflow-based production-scale machine learning platform. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New York, NY, USA, 2017), KDD’17, ACM, pp. 1387–1395.
-
(2017)
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New York, NY, USA, 2017), KDD’17
, pp. 1387-1395
-
-
Baylor, D.1
Breck, E.2
Cheng, H.-T.3
Fiedel, N.4
Foo, C.Y.5
Haque, Z.6
Haykal, S.7
Ispir, M.8
Jain, V.9
Koc, L.10
Koo, C.Y.11
Lew, L.12
Mewald, C.13
Modi, A.N.14
Polyzotis, N.15
Ramesh, S.16
Roy, S.17
Whang, S.E.18
Wicke, M.19
Wilkiewicz, J.20
Zhang, X.21
Zinkevich, M.22
more..
-
13
-
-
85018312329
-
Analysis of causative attacks against svms learning from data streams
-
New York, NY, USA, ACM
-
BURKARD, C., AND LAGESSE, B. Analysis of causative attacks against svms learning from data streams. In Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics (New York, NY, USA, 2017), IWSPA’17, ACM, pp. 31–36.
-
(2017)
Proceedings of the 3rd ACM on International Workshop on Security and Privacy Analytics (New York, NY, USA, 2017), IWSPA’17
, pp. 31-36
-
-
Burkard, C.1
Lagesse, B.2
-
14
-
-
84962359295
-
CRMactive: An active learning based approach for effective video annotation and retrieval
-
Shanghai, China, June ACM
-
CHATTERJEE, M., AND LEUSKI, A. CRMActive: An Active Learning Based Approach for Effective Video Annotation and Retrieval. In Proceedings of ACM International Conference on Multimedia Retrieval (ICMR) (Shanghai, China, June 2015), ACM, pp. 535–538.
-
(2015)
Proceedings of ACM International Conference on Multimedia Retrieval (ICMR)
, pp. 535-538
-
-
Chatterjee, M.1
Leuski, A.2
-
15
-
-
85077013403
-
Internet of things: From sensing to doing
-
DAECHER, A. Internet of things: From sensing to doing. Wall Street Journal, 2016.
-
(2016)
Wall Street Journal
-
-
Daecher, A.1
-
16
-
-
34547972773
-
Boosting for transfer learning
-
New York, NY, USA, ACM
-
DAI, W., YANG, Q., XUE, G.-R., AND YU, Y. Boosting for transfer learning. In Proceedings of the 24th International Conference on Machine Learning (New York, NY, USA, 2007), ICML’07, ACM, pp. 193–200.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning (New York, NY, USA, 2007), ICML’07
, pp. 193-200
-
-
Dai, W.1
Yang, Q.2
Xue, G.-R.3
Yu, Y.4
-
17
-
-
84995938045
-
-
Apress, Berkely, CA, USA
-
FAMILIAR, B. Microservices, IoT, and Azure: Leveraging DevOps and Microservice Architecture to Deliver SaaS Solutions, 1st ed. Apress, Berkely, CA, USA, 2015.
-
(2015)
Microservices, IoT, and Azure: Leveraging DevOps and Microservice Architecture to Deliver SaaS Solutions, 1st ed
-
-
Familiar, B.1
-
18
-
-
85056648219
-
A multi-tier data reduction mechanism for iot sensors
-
New York, NY, USA, ACM
-
FENG, L., KORTOÇI, P., AND LIU, Y. A multi-tier data reduction mechanism for iot sensors. In Proceedings of the Seventh International Conference on the Internet of Things (New York, NY, USA, 2017), IoT’17, ACM, pp. 6:1–6:8.
-
(2017)
Proceedings of the Seventh International Conference on the Internet of Things (New York, NY, USA, 2017), IoT’17
, pp. 61-68
-
-
Feng, L.1
Kortoçi, P.2
Liu, Y.3
-
20
-
-
84876943063
-
Internet of things (iot): A vision, architectural elements, and future directions
-
Sept
-
GUBBI, J., BUYYA, R., MARUSIC, S., AND PALANISWAMI, M. Internet of things (iot): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29, 7 (Sept. 2013), 1645–1660.
-
(2013)
Future Gener. Comput. Syst.
, vol.29
, Issue.7
, pp. 1645-1660
-
-
Gubbi, J.1
Buyya, R.2
Marusic, S.3
Palaniswami, M.4
-
21
-
-
85051227655
-
From smart sensors to smarter solutions with physical analytics
-
New York, NY, USA, ACM
-
HAMANN, H. F. From smart sensors to smarter solutions with physical analytics. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems (New York, NY, USA, 2015), SenSys’15, ACM, pp. 3–3.
-
(2015)
Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems (New York, NY, USA, 2015), SenSys’15
, pp. 3
-
-
Hamann, H.F.1
-
22
-
-
84925363012
-
-
HIPP, D. R. Sqlite, 2015. https://www.sqlite.org/download.html.
-
(2015)
Sqlite
-
-
Hipp, D.R.1
-
23
-
-
79951761350
-
Zookeeper: Wait-free coordination for internet-scale systems
-
Berkeley, CA, USA, USENIX Association
-
HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B. Zookeeper: Wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference (Berkeley, CA, USA, 2010), USENIXATC’10, USENIX Association, pp. 11–11.
-
(2010)
Proceedingsofthe2010USENIXConferenceonUSENIXAnnual Technical Conference (Berkeley, CA, USA, 2010), USENIXATC’10
, pp. 11
-
-
Hunt, P.1
Konar, M.2
Junqueira, F.P.3
Reed, B.4
-
25
-
-
72249118633
-
Quincy: Fair scheduling for distributed computing clusters
-
New York, NY, USA, ACM
-
ISARD, M., PRABHAKARAN, V., CURREY, J., WIEDER, U., TALWAR, K., AND GOLDBERG, A. Quincy: Fair scheduling for distributed computing clusters. In Proceedings of the ACMSIGOPS22NdSymposiumonOperatingSystemsPrinciples (New York, NY, USA, 2009), SOSP’09, ACM, pp. 261–276.
-
(2009)
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles (New York, NY, USA, 2009), SOSP’09
, pp. 261-276
-
-
Isard, M.1
Prabhakaran, V.2
Currey, J.3
Wieder, U.4
Talwar, K.5
Goldberg, A.6
-
27
-
-
85048452922
-
Resource-efficient machine learning in 2 KB RAM for the internet of things
-
Sydney, NSW, Australia, 6-11 August 2017
-
KUMAR, A., GOYAL, S., AND VARMA, M. Resource-efficient machine learning in 2 KB RAM for the internet of things. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017 (2017), pp. 1935–1944.
-
(2017)
Proceedings of the 34th International Conference on Machine Learning, ICML 2017
, pp. 1935-1944
-
-
Kumar, A.1
Goyal, S.2
Varma, M.3
-
28
-
-
72249087330
-
A scheduling philosophy for multi-processing systems
-
New York, NY, USA, ACM
-
LAMPSON, B. W. A scheduling philosophy for multi-processing systems. In Proceedings of the First ACM Symposium on Operating System Principles (New York, NY, USA, 1967), SOSP’67, ACM, pp. 8.1–8.24.
-
(1967)
Proceedings of the First ACM Symposium on Operating System Principles (New York, NY, USA, 1967), SOSP’67
, pp. 8.1-8.24
-
-
Lampson, B.W.1
-
30
-
-
84940996194
-
Fog computing: Focusing on mobile users at the edge
-
abs/1502.01815
-
LUAN, T. H., GAO, L., LI, Z., XIANG, Y., AND SUN, L. Fog computing: Focusing on mobile users at the edge. CoRR abs/1502.01815 (2015).
-
(2015)
CoRR
-
-
Luan, T.H.1
Gao, L.2
Li, Z.3
Xiang, Y.4
Sun, L.5
-
31
-
-
84970028927
-
Adding vs. Averaging in distributed primal-dual optimization
-
JMLR.org
-
MA, C., SMITH, V., JAGGI, M., JORDAN, M. I., RICHTÁRIK, P., AND TAKÁČ, M. Adding vs. averaging in distributed primal-dual optimization. In Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Volume 37 (2015), ICML’15, JMLR.org, pp. 1973–1982.
-
Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Volume 37 (2015), ICML’15
, pp. 1973-1982
-
-
Ma, C.1
Smith, V.2
Jaggi, M.3
Jordan, M.I.4
Richtárik, P.5
Takáč, M.6
-
32
-
-
85023175474
-
Streamlearner: Distributed incremental machine learning on event streams: Grand challenge
-
New York, NY, USA, ACM
-
MAYER, C., MAYER, R., AND ABDO, M. Streamlearner: Distributed incremental machine learning on event streams: Grand challenge. In Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems (New York, NY, USA, 2017), DEBS’17, ACM, pp. 298–303.
-
(2017)
Proceedings of the 11th ACM International Conference on Distributed and Event-Based Systems (New York, NY, USA, 2017), DEBS’17
, pp. 298-303
-
-
Mayer, C.1
Mayer, R.2
Abdo, M.3
-
33
-
-
84926444656
-
Docker: Lightweight linux containers for consistent development and deployment
-
Mar. 2014
-
MERKEL, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 239 (Mar. 2014).
-
(2014)
Linux J
, pp. 239
-
-
Merkel, D.1
-
34
-
-
57349165346
-
Towards efficient online reinforcement learning using neuroevolution
-
New York, NY, USA, ACM
-
METZEN, J. H., KIRCHNER, F., EDGINGTON, M., AND KASSAHUN, Y. Towards efficient online reinforcement learning using neuroevolution. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation (New York, NY, USA, 2008), GECCO’08, ACM, pp. 1425–1426.
-
(2008)
Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation (New York, NY, USA, 2008), GECCO’08
, pp. 1425-1426
-
-
Metzen, J.H.1
Kirchner, F.2
Edgington, M.3
Kassahun, Y.4
-
37
-
-
84883020282
-
Transfer learning with applications on text, sensors and images
-
New York, NY, USA, ACM
-
PAN, S. J. Transfer learning with applications on text, sensors and images. In Proceedings of the 2Nd Workshop on Machine Learning for Interactive Systems: Bridging the Gap Between Perception, Action and Communication (New York, NY, USA, 2013), MLIS’13, ACM, pp. 7–7.
-
(2013)
Proceedings of the 2Nd Workshop on Machine Learning for Interactive Systems: Bridging the Gap between Perception, Action and Communication (New York, NY, USA, 2013), MLIS’13
, pp. 7
-
-
Pan, S.J.1
-
38
-
-
84964067243
-
Real-time data reduction at the network edge of internet-of-things systems
-
Washington, DC, USA, IEEE Computer Society
-
PAPAGEORGIOU, A., CHENG, B., AND KOVACS, E. Real-time data reduction at the network edge of internet-of-things systems. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM) (Washington, DC, USA, 2015), CNSM’15, IEEE Computer Society, pp. 284–291.
-
(2015)
Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM) (Washington, DC, USA, 2015), CNSM’15
, pp. 284-291
-
-
Papageorgiou, A.1
Cheng, B.2
Kovacs, E.3
-
39
-
-
85021190615
-
Data management challenges in production machine learning
-
New York, NY, USA, ACM
-
POLYZOTIS, N., ROY, S., WHANG, S. E., AND ZINKEVICH, M. Data management challenges in production machine learning. In Proceedings of the 2017 ACM International Conference on Management of Data (New York, NY, USA, 2017), SIGMOD ’17, ACM, pp. 1723–1726.
-
(2017)
Proceedings of the 2017 ACM International Conference on Management of Data (New York, NY, USA, 2017), SIGMOD ’17
, pp. 1723-1726
-
-
Polyzotis, N.1
Roy, S.2
Whang, S.E.3
Zinkevich, M.4
-
40
-
-
34547971961
-
Self-taught learning: Transfer learning from unlabeled data
-
New York, NY, USA, ACM
-
RAINA, R., BATTLE, A., LEE, H., PACKER, B., AND NG, A. Y. Self-taught learning: Transfer learning from unlabeled data. In Proceedings of the 24th International Conference on Machine Learning (New York, NY, USA, 2007), ICML’07, ACM, pp. 759–766.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning (New York, NY, USA, 2007), ICML’07
, pp. 759-766
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.Y.5
-
41
-
-
84940866421
-
Efficient sample generation for scalable meta learning
-
April
-
SCHELTER, S., SOTO, J., MARKL, V., BURDICK, D., REINWALD, B., AND EVFIMIEVSKI, A. Efficient sample generation for scalable meta learning. In 2015 IEEE 31st International Conference on Data Engineering (April 2015), pp. 1191–1202.
-
(2015)
2015 IEEE 31st International Conference on Data Engineering
, pp. 1191-1202
-
-
Schelter, S.1
Soto, J.2
Markl, V.3
Burdick, D.4
Reinwald, B.5
Evfimievski, A.6
-
42
-
-
85077734716
-
Federated multi-task learning
-
abs/1705.10467
-
SMITH, V., CHIANG, C., SANJABI, M., AND TALWALKAR, A. Federated multi-task learning. CoRR abs/1705.10467 (2017).
-
(2017)
CoRR
-
-
Smith, V.1
Chiang, C.2
Sanjabi, M.3
Talwalkar, A.4
-
43
-
-
85077734716
-
Federated multi-task learning
-
abs/1705.10467
-
SMITH, V., CHIANG, C., SANJABI, M., AND TALWALKAR, A. Federated multi-task learning. CoRR abs/1705.10467 (2017).
-
(2017)
CoRR
-
-
Smith, V.1
Chiang, C.2
Sanjabi, M.3
Talwalkar, A.4
-
44
-
-
85077756213
-
-
SPOTIFY. Luigi, 2018. https://github.com/spotify/luigi.
-
(2018)
Luigi
-
-
-
45
-
-
85075761598
-
Model governance: Reducing the anarchy of production ml
-
Berkeley, CA, USA, USENIX Association
-
SRIDHAR, V., SUBRAMANIAN, S., SUNDARARAMAN, S., ROSELLI, D., AND TALAGALA, N. Model governance: Reducing the anarchy of production ml. In Proceedings of the 2018 USENIX Conference on USENIX Annual Technical Conference (Berkeley, CA, USA, 2018), USENIXATC’18, USENIX Association.
-
(2018)
Proceedings of the 2018 USENIX Conference on USENIX Annual Technical Conference (Berkeley, CA, USA, 2018), USENIXATC’18
-
-
Sridhar, V.1
Subramanian, S.2
Sundararaman, S.3
Roselli, D.4
Talagala, N.5
-
47
-
-
85077758037
-
-
SWIM. Internet Draft
-
SWIM. Swim edge learning. Internet Draft, 2018.
-
(2018)
Swim Edge Learning
-
-
-
48
-
-
34547997175
-
Cross-domain transfer for reinforcement learning
-
New York, NY, USA, ACM
-
TAYLOR, M. E., AND STONE, P. Cross-domain transfer for reinforcement learning. In Proceedings of the 24th International Conference on Machine Learning (New York, NY, USA, 2007), ICML’07, ACM, pp. 879–886.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning (New York, NY, USA, 2007), ICML’07
, pp. 879-886
-
-
Taylor, M.E.1
Stone, P.2
-
49
-
-
34848816477
-
Transfer learning via inter-task mappings for temporal difference learning
-
Dec
-
TAYLOR, M. E., STONE, P., AND LIU, Y. Transfer learning via inter-task mappings for temporal difference learning. J. Mach. Learn. Res. 8 (Dec. 2007), 2125–2167.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 2125-2167
-
-
Taylor, M.E.1
Stone, P.2
Liu, Y.3
-
50
-
-
84893249524
-
Apache hadoop yarn: Yet another resource negotiator
-
New York, NY, USA, ACM
-
VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGARWAL, S., KONAR, M., EVANS, R., GRAVES, T., LOWE, J., SHAH, H., SETH, S., SAHA, B., CURINO, C., O’MALLEY, O., RADIA, S., REED, B., AND BALDESCHWIELER, E. Apache hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th Annual Symposium on Cloud Computing (New York, NY, USA, 2013), SOCC’13, ACM, pp. 5:1–5:16.
-
(2013)
Proceedings of the 4th Annual Symposium on Cloud Computing (New York, NY, USA, 2013), SOCC’13
, pp. 51-516
-
-
Vavilapalli, V.K.1
Murthy, A.C.2
Douglas, C.3
Agarwal, S.4
Konar, M.5
Evans, R.6
Graves, T.7
Lowe, J.8
Shah, H.9
Seth, S.10
Saha, B.11
Curino, C.12
O’Malley, O.13
Radia, S.14
Reed, B.15
Baldeschwieler, E.16
-
51
-
-
85054915538
-
When deep learning meets transfer learning
-
New York, NY, USA, ACM
-
YANG, Q. When deep learning meets transfer learning. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (New York, NY, USA, 2017), CIKM ’17, ACM, pp. 5–5.
-
(2017)
Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (New York, NY, USA, 2017), CIKM ’17
, pp. 5
-
-
Yang, Q.1
-
52
-
-
84994553244
-
Face recognition via active annotation and learning
-
New York, NY, USA, ACM
-
YE, H., SHAO, W., WANG, H., MA, J., WANG, L., ZHENG, Y., AND XUE, X. Face recognition via active annotation and learning. In Proceedings of the 2016 ACM on Multimedia Conference (New York, NY, USA, 2016), MM’16, ACM, pp. 1058–1062.
-
(2016)
Proceedings of the 2016 ACM on Multimedia Conference (New York, NY, USA, 2016), MM’16
, pp. 1058-1062
-
-
Ye, H.1
Shao, W.2
Wang, H.3
Ma, J.4
Wang, L.5
Zheng, Y.6
Xue, X.7
-
53
-
-
85076883048
-
Improving mapreduce performance in heterogeneous environments
-
Berkeley, CA, USA, USENIX Association
-
ZAHARIA, M., KONWINSKI, A., JOSEPH, A. D., KATZ, R., AND STOICA, I. Improving mapreduce performance in heterogeneous environments. In Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation (Berkeley, CA, USA, 2008), OSDI’08, USENIX Association, pp. 29–42.
-
(2008)
Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation (Berkeley, CA, USA, 2008), OSDI’08
, pp. 29-42
-
-
Zaharia, M.1
Konwinski, A.2
Joseph, A.D.3
Katz, R.4
Stoica, I.5
-
54
-
-
84994589486
-
Apache spark: A unified engine for big data processing
-
Oct
-
ZAHARIA, M., XIN, R. S., WENDELL, P., DAS, T., ARMBRUST, M., DAVE, A., MENG, X., ROSEN, J., VENKATARAMAN, S., FRANKLIN, M. J., GHODSI, A., GONZALEZ, J., SHENKER, S., AND STOICA, I. Apache spark: A unified engine for big data processing. Communications of the ACM 59, 11 (Oct. 2016), 56–65.
-
(2016)
Communications of the ACM
, vol.59
, Issue.11
, pp. 56-65
-
-
Zaharia, M.1
Xin, R.S.2
Wendell, P.3
Das, T.4
Armbrust, M.5
Dave, A.6
Meng, X.7
Rosen, J.8
Venkataraman, S.9
Franklin, M.J.10
Ghodsi, A.11
Gonzalez, J.12
Shenker, S.13
Stoica, I.14
-
55
-
-
84955628792
-
Task-dependent multi-task multiple kernel learning for facial action unit detection
-
Mar
-
ZHANG, X., AND MAHOOR, M. H. Task-dependent multi-task multiple kernel learning for facial action unit detection. Pattern Recogn. 51, C (Mar. 2016), 187–196.
-
(2016)
Pattern Recogn
, vol.51
, Issue.100
, pp. 187-196
-
-
Zhang, X.1
Mahoor, M.H.2
|