메뉴 건너뛰기




Volumn , Issue , 2015, Pages

The missing piece in complex analytics: Low latency, scalable model management and serving with VELOX

Author keywords

[No Author keywords available]

Indexed keywords

DATA ANALYTICS; LARGE DATASET; METADATA; ONLINE SYSTEMS;

EID: 85084017187     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (47)

References (22)
  • 1
    • 80053490275 scopus 로고    scopus 로고
    • The case for predictive database systems: Opportunities and challenges
    • M. Akdere et al. The case for predictive database systems: Opportunities and challenges. In CIDR, 2011.
    • (2011) CIDR
    • Akdere, M.1
  • 3
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Jan
    • Y. Bengio. Learning deep architectures for AI. Found. Trends Mach. Learn., 2(1):1–127, Jan. 2009.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 4
    • 0038570636 scopus 로고    scopus 로고
    • Applying model management to classical meta data problems
    • P. A. Bernstein. Applying model management to classical meta data problems. In CIDR, 2003.
    • (2003) CIDR
    • Bernstein, P.A.1
  • 5
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • June
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov., 2(2):121–167, June 1998.
    • (1998) Data Min. Knowl. Discov. , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 34247346862 scopus 로고    scopus 로고
    • MauveDB: Supporting model-based user views in database systems
    • A. Deshpande and S. Madden. MauveDB: Supporting model-based user views in database systems. In SIGMOD, 2006.
    • (2006) SIGMOD
    • Deshpande, A.1    Madden, S.2
  • 8
    • 84862644049 scopus 로고    scopus 로고
    • Towards a unified architecture for in-rdbms analytics
    • X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified architecture for in-rdbms analytics. In SIGMOD, 2012.
    • (2012) SIGMOD
    • Feng, X.1    Kumar, A.2    Recht, B.3    Ré, C.4
  • 9
    • 85072980230 scopus 로고    scopus 로고
    • Powergraph: Distributed graph-parallel computation on natural graphs
    • J. E. Gonzalez et al. Powergraph: Distributed graph-parallel computation on natural graphs. In OSDI, 2012.
    • (2012) OSDI
    • Gonzalez, J.E.1
  • 10
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Aug
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30–37, Aug. 2009.
    • (2009) IEEE Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 12
    • 84929605030 scopus 로고    scopus 로고
    • Sparkler: Supporting large-scale matrix factorization
    • B. Li, S. Tata, and Y. Sismanis. Sparkler: Supporting large-scale matrix factorization. In EDBT, 2013.
    • (2013) EDBT
    • Li, B.1    Tata, S.2    Sismanis, Y.3
  • 13
    • 85118315988 scopus 로고    scopus 로고
    • Tachyon: Reliable, memory speed storage for cluster computing frameworks
    • H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Tachyon: Reliable, memory speed storage for cluster computing frameworks. In SOCC, 2014.
    • (2014) SOCC
    • Li, H.1    Ghodsi, A.2    Zaharia, M.3    Shenker, S.4    Stoica, I.5
  • 14
    • 77954641643 scopus 로고    scopus 로고
    • A contextual-bandit approach to personalized news article recommendation
    • L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news article recommendation. In WWW, 2010.
    • (2010) WWW
    • Li, L.1    Chu, W.2    Langford, J.3    Schapire, R.E.4
  • 15
    • 84858731284 scopus 로고    scopus 로고
    • Matrix completion from power-law distributed samples
    • R. Meka et al. Matrix completion from power-law distributed samples. In NIPS. 2009.
    • (2009) NIPS
    • Meka, R.1
  • 17
    • 84894647945 scopus 로고    scopus 로고
    • MLI: An API for distributed machine learning
    • E. R. Sparks et al. MLI: An API for distributed machine learning. In ICDM, 2013.
    • (2013) ICDM
    • Sparks, E.R.1
  • 20
  • 21
    • 85040175609 scopus 로고    scopus 로고
    • Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
    • M. Zaharia et al. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In NSDI, 2012.
    • (2012) NSDI
    • Zaharia, M.1
  • 22
    • 84904317928 scopus 로고    scopus 로고
    • Materialization optimizations for feature selection workloads
    • C. Zhang, A. Kumar, and C. Ré. Materialization optimizations for feature selection workloads. In SIGMOD, 2014.
    • (2014) SIGMOD
    • Zhang, C.1    Kumar, A.2    Ré, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.