메뉴 건너뛰기




Volumn , Issue , 2013, Pages

How to fit when no one size fits

Author keywords

[No Author keywords available]

Indexed keywords

QUERY PROCESSING;

EID: 85084012447     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (44)

References (65)
  • 3
    • 79957809015 scopus 로고    scopus 로고
    • HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for analytical workloads
    • A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin. HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. In VLDB, 2009.
    • (2009) VLDB
    • Abouzeid, A.1    Bajda-Pawlikowski, K.2    Abadi, D.3    Silberschatz, A.4    Rasin, A.5
  • 4
    • 84873107385 scopus 로고    scopus 로고
    • DBToaster: Higher-order delta processing for dynamic, frequently fresh views
    • Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views. PVLDB, 5(10), 2012.
    • (2012) PVLDB , vol.5 , Issue.10
    • Ahmad, Y.1    Kennedy, O.2    Koch, C.3    Nikolic, M.4
  • 6
    • 67649649579 scopus 로고    scopus 로고
    • Scale-up strategies for processing high-rate data streams in system s
    • H. Andrade, B. Gedik, K.-L. Wu, and P. S. Yu. Scale-Up Strategies for Processing High-Rate Data Streams in System S. In ICDE, 2009.
    • (2009) ICDE
    • Andrade, H.1    Gedik, B.2    Wu, K.-L.3    Yu, P.S.4
  • 8
    • 2442427286 scopus 로고    scopus 로고
    • Load shedding for aggregation queries over data streams
    • B. Babcock, M. Datar, and R. Motwani. Load Shedding for Aggregation queries over Data Streams. In ICDE, 2004.
    • (2004) ICDE
    • Babcock, B.1    Datar, M.2    Motwani, R.3
  • 9
    • 0001986373 scopus 로고    scopus 로고
    • Continuous queries over data streams
    • Sept
    • S. Babu and J. Widom. Continuous Queries over Data Streams. SIGMOD Record, 30(3), Sept. 2001.
    • (2001) SIGMOD Record , vol.30 , Issue.3
    • Babu, S.1    Widom, J.2
  • 10
    • 84860579985 scopus 로고    scopus 로고
    • Managing parallelism for stream processing in the cloud
    • N. Backman, R. Fonseca, and U. Çetintemel. Managing Parallelism for Stream Processing in the Cloud. In HotCDP, 2012.
    • (2012) HotCDP
    • Backman, N.1    Fonseca, R.2    Çetintemel, U.3
  • 13
    • 78650140677 scopus 로고    scopus 로고
    • Secret: A model for analysis of the execution semantics of stream processing systems
    • I. Botan, R. Derakhshan, N. Dindar, L. Haas, R. J. Miller, and N. Tatbul. SECRET: a Model for Analysis of the Execution Semantics of Stream Processing Systems. PVLDB, 3(1-2), 2010.
    • (2010) PVLDB , vol.3 , Issue.1-2
    • Botan, I.1    Derakhshan, R.2    Dindar, N.3    Haas, L.4    Miller, R.J.5    Tatbul, N.6
  • 14
    • 85072869706 scopus 로고    scopus 로고
    • Apache Cassandra. http://cassandra.apache.org/.
  • 15
    • 84864256769 scopus 로고    scopus 로고
    • Temporal analytics on big data for web advertising
    • B. Chandramouli, J. Goldstein, and S. Duan. Temporal Analytics on Big Data for Web Advertising. In ICDE, 2012.
    • (2012) ICDE
    • Chandramouli, B.1    Goldstein, J.2    Duan, S.3
  • 17
    • 0040377588 scopus 로고    scopus 로고
    • Niagaracq: A scalable continuous query system for internet databases
    • J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A Scalable Continuous Query System for Internet Databases. In SIGMOD, 2000.
    • (2000) SIGMOD
    • Chen, J.1    DeWitt, D.J.2    Tian, F.3    Wang, Y.4
  • 21
    • 85030321143 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In OSDI, 2004.
    • (2004) OSDI
    • Dean, J.1    Ghemawat, S.2
  • 23
    • 85072867397 scopus 로고    scopus 로고
    • Esper. http://esper.codehaus.org/.
  • 24
    • 85072869573 scopus 로고    scopus 로고
    • Eucalyptus. http://www.eucalyptus.com.
  • 26
    • 85072872442 scopus 로고    scopus 로고
    • Apache Hadoop. http://hadoop.apache.org/.
  • 27
    • 85072861712 scopus 로고    scopus 로고
    • Apache HBase. http://hbase.apache.org/.
  • 28
    • 77954920597 scopus 로고    scopus 로고
    • CoMET: Batched stream processing for data intensive distributed computing
    • B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou. Comet: Batched Stream Processing for Data Intensive Distributed Computing. In SOCC, 2010.
    • (2010) SOCC
    • He, B.1    Yang, M.2    Guo, Z.3    Chen, R.4    Su, B.5    Lin, W.6    Zhou, L.7
  • 30
    • 85072853317 scopus 로고    scopus 로고
    • Apache Hive. http://hive.apache.org/.
  • 31
    • 35448961922 scopus 로고    scopus 로고
    • Dryad: Distributed data-parallel programs from sequential building blocks
    • M. Isard, M. Budiu, and Y. Yu. Dryad: Distributed Data-Parallel Programs from Sequential Building Blocks. In EuroSys, 2007.
    • (2007) EuroSys
    • Isard, M.1    Budiu, M.2    Yu, Y.3
  • 34
    • 70349107859 scopus 로고    scopus 로고
    • Exploiting the power of relational databases for efficient stream processing
    • E. Liarou, R. Goncalves, and S. Idreos. Exploiting the Power of Relational Databases for Efficient Stream Processing. In EDBT, 2009.
    • (2009) EDBT
    • Liarou, E.1    Goncalves, R.2    Idreos, S.3
  • 35
    • 77954721087 scopus 로고    scopus 로고
    • Automated control for elastic storage
    • H. C. Lim, S. Babu, and J. S. Chase. Automated Control for Elastic Storage. In ICAC, 2010.
    • (2010) ICAC
    • Lim, H.C.1    Babu, S.2    Chase, J.S.3
  • 37
    • 84863894558 scopus 로고    scopus 로고
    • Massively-parallel stream processing under QoS constraints with nephele
    • B. Lohrmann, D. Warneke, and O. Kao. Massively-Parallel Stream Processing under QoS Constraints with Nephele. In HPDC, 2012.
    • (2012) HPDC
    • Lohrmann, B.1    Warneke, D.2    Kao, O.3
  • 39
  • 40
    • 85072866601 scopus 로고    scopus 로고
    • MonetDB. http://www.monetdb.org/Home.
  • 41
    • 85072857327 scopus 로고    scopus 로고
    • mongoDB. http://www.mongodb.org/.
  • 45
    • 85072854102 scopus 로고    scopus 로고
    • Oracle CEP. http://www.oracle.com/technetwork/middleware/complex-eventprocessing/.
  • 46
    • 84863769684 scopus 로고    scopus 로고
    • Online aggregation for large MapReduce jobs
    • N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online Aggregation for Large MapReduce Jobs. PVLDB, 4(11), 2011.
    • (2011) PVLDB , vol.4 , Issue.11
    • Pansare, N.1    Borkar, V.R.2    Jermaine, C.3    Condie, T.4
  • 48
    • 85072869517 scopus 로고    scopus 로고
    • Project Voldemort. http://www.project-voldemort.com/voldemort/.
  • 49
    • 84873306298 scopus 로고    scopus 로고
    • Protocol Buffers. https://developers.google.com/protocol-buffers/.
    • Protocol Buffers
  • 50
    • 85072850652 scopus 로고    scopus 로고
    • Redis. http://redis.io/.
  • 51
  • 52
    • 84904459344 scopus 로고    scopus 로고
    • SAS In-Memory Analytics. http://www.sas.com/high-performanceanalytics/how-does-it-work/in-memory.html.
    • SAS In-Memory Analytics
  • 53
    • 85072874188 scopus 로고    scopus 로고
    • SAS OLAP Server. http://www.sas.com/technologies/dw/storage/mddb/index.html.
    • SAS OLAP Server
  • 54
    • 79960017538 scopus 로고    scopus 로고
    • Changing flights in mid-air: A model for safely modifying continuous queries
    • K. Sheykh-Esmaili, T. Sanamrad, P. M. Fischer, and N. Tatbul. Changing Flights in Mid-air: A Model for Safely Modifying Continuous Queries. In SIGMOD, 2011.
    • (2011) SIGMOD
    • Sheykh-Esmaili, K.1    Sanamrad, T.2    Fischer, P.M.3    Tatbul, N.4
  • 56
    • 85072865452 scopus 로고    scopus 로고
    • Storm. http://storm-project.net/.
  • 57
    • 85072859176 scopus 로고    scopus 로고
    • StreamBase. http://www.streambase.com.
  • 58
    • 79957846384 scopus 로고    scopus 로고
    • Streaming data integration: Challenges and opportunities
    • N. Tatbul. Streaming Data Integration: Challenges and Opportunities. In NTII, 2010.
    • (2010) NTII
    • Tatbul, N.1
  • 59
    • 85072854196 scopus 로고    scopus 로고
    • TellApart. http://tellapart.com/.
  • 60
    • 85072859411 scopus 로고    scopus 로고
    • Truviso. http://www.truviso.com.
  • 61
    • 85072869884 scopus 로고    scopus 로고
    • Vertica. http://www.vertica.com.
  • 62
    • 84893473901 scopus 로고    scopus 로고
    • Windows Azure SQL Database. http://msdn.microsoft.com/enus/library/windowsazure/ee336279.aspx.
    • Windows Azure SQL Database
  • 65
    • 84962598306 scopus 로고    scopus 로고
    • Discretized streams: An efficient and fault-tolerant model for stream processing on large clusters
    • M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized Streams: An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters. In HotCloud, 2012.
    • (2012) HotCloud
    • Zaharia, M.1    Das, T.2    Li, H.3    Shenker, S.4    Stoica, I.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.