-
2
-
-
84879878330
-
Scaling up spike-and-slab models for unsupervised feature learning
-
To appear
-
Goodfellow, I. J., Courville, A., and Bengio, Y. (2013). Scaling up spike-and-slab models for unsupervised feature learning. IEEE, special issue on deep learning. (To appear).
-
(2013)
IEEE, Special Issue on Deep Learning
-
-
Goodfellow, I.J.1
Courville, A.2
Bengio, Y.3
-
3
-
-
84867720412
-
-
Technical report
-
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. Technical report, arXiv:1207.0580.
-
(2012)
Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
4
-
-
45749110924
-
Representational power of restricted boltzmann machines and deep belief networks
-
Le Roux, N. and Bengio, Y. (2008). Representational power of restricted Boltzmann machines and deep belief networks. Neural Computation, 20(6), 1631–1649.
-
(2008)
Neural Computation
, vol.20
, Issue.6
, pp. 1631-1649
-
-
Le Roux, N.1
Bengio, Y.2
-
5
-
-
84964756923
-
Learning feature hierarchies with cented deep boltzmann machines
-
abs
-
Montavon, G. and Müller, K.-R. (2012). Learning feature hierarchies with cented deep Boltzmann machines. CoRR, abs/1203.4416.
-
(2012)
CoRR
-
-
Montavon, G.1
Müller, K.-R.2
-
6
-
-
0000273048
-
Annealed importance sampling
-
Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing, 11(2), 125–139.
-
(2001)
Statistics and Computing
, vol.11
, Issue.2
, pp. 125-139
-
-
Neal, R.M.1
-
8
-
-
84862282438
-
Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
-
Fort Lauderdale. Supplementary material (4 pages) also available
-
Stoyanov, V., Ropson, A., and Eisner, J. (2011). Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), volume 15 of JMLR Workshop and Conference Proceedings, pages 725–733, Fort Lauderdale. Supplementary material (4 pages) also available.
-
(2011)
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), Volume 15 of JMLR Workshop and Conference Proceedings
, pp. 725-733
-
-
Stoyanov, V.1
Ropson, A.2
Eisner, J.3
-
9
-
-
56449086223
-
Training restricted boltzmann machines using approximations to the likelihood gradient
-
W. W. Cohen, A. McCallum, and S. T. Roweis, editors, ACM
-
Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. In W. W. Cohen, A. McCallum, and S. T. Roweis, editors, ICML 2008, pages 1064–1071. ACM.
-
(2008)
ICML 2008
, pp. 1064-1071
-
-
Tieleman, T.1
-
10
-
-
33644756784
-
On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates
-
Younes, L. (1999). On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics and Stochastic Reports, 65(3), 177–228.
-
(1999)
Stochastics and Stochastic Reports
, vol.65
, Issue.3
, pp. 177-228
-
-
Younes, L.1
|