-
1
-
-
84867856259
-
A closer look at adaptive regret
-
D. Adamskiy, W. M. Koolen, A. Chernov, and V. Vovk, “A Closer Look at Adaptive Regret,” in Proceedings of the International Conference on Algorithmic Learning Theory (ALT), 2012, pp. 290–304.
-
(2012)
Proceedings of the International Conference on Algorithmic Learning Theory (ALT)
, pp. 290-304
-
-
Adamskiy, D.1
Koolen, W.M.2
Chernov, A.3
Vovk, V.4
-
2
-
-
0030819669
-
Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain
-
A. Blum and A. Blum, “Empirical Support for Winnow and Weighted-Majority Algorithms: Results on a Calendar Scheduling Domain,” Machine Learning, vol. 26, no. 1, pp. 5–23, 1997.
-
(1997)
Machine Learning
, vol.26
, Issue.1
, pp. 5-23
-
-
Blum, A.1
Blum, A.2
-
3
-
-
84877763285
-
Mirror descent meets fixed share (and feels no regret)
-
N. Cesa-Bianchi, P. Gaillard, G. Lugosi, and G. Stoltz, “Mirror descent meets fixed share (and feels no regret),” in Advances in Neural Information Processing Systems (NIPS), 2012, pp. 980–988.
-
(2012)
Advances in Neural Information Processing Systems (NIPS)
, pp. 980-988
-
-
Cesa-Bianchi, N.1
Gaillard, P.2
Lugosi, G.3
Stoltz, G.4
-
5
-
-
84969811984
-
Strongly adaptive online learning
-
A. Daniely, A. Gonen, and S. Shalev-Shwartz, “Strongly Adaptive Online Learning,” Proceedings of the International Conference on Machine Learning (ICML), pp. 1–18, 2015.
-
(2015)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 1-18
-
-
Daniely, A.1
Gonen, A.2
Shalev-Shwartz, S.3
-
6
-
-
0030643068
-
Using and combining predictors that specialize
-
Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth, “Using and combining predictors that specialize,” Proceedings of the ACM symposium on Theory of computing (STOC), vol. 37, no. 3, pp. 334–343, 1997.
-
(1997)
Proceedings of the ACM Symposium on Theory of Computing (STOC)
, vol.37
, Issue.3
, pp. 334-343
-
-
Freund, Y.1
Schapire, R.E.2
Singer, Y.3
Warmuth, M.K.4
-
7
-
-
85015213553
-
Dynamic metric learning from pairwise comparisons
-
K. Greenewald, S. Kelley, and A. O. Hero, “Dynamic metric learning from pairwise comparisons,” 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2016.
-
(2016)
54th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
-
-
Greenewald, K.1
Kelley, S.2
Hero, A.O.3
-
8
-
-
84867973521
-
Efficient tracking of large classes of experts
-
A. György, T. Linder, and G. Lugosi, “Efficient tracking of large classes of experts,” IEEE Transactions on Information Theory, vol. 58, no. 11, pp. 6709–6725, 2012.
-
(2012)
IEEE Transactions on Information Theory
, vol.58
, Issue.11
, pp. 6709-6725
-
-
György, A.1
Linder, T.2
Lugosi, G.3
-
9
-
-
85038403972
-
Adaptive algorithms for online decision problems
-
E. Hazan and C. Seshadhri, “Adaptive Algorithms for Online Decision Problems,” IBM Research Report, vol. 10418, pp. 1–19, 2007.
-
(2007)
IBM Research Report
, vol.10418
, pp. 1-19
-
-
Hazan, E.1
Seshadhri, C.2
-
10
-
-
0032137328
-
Tracking the best expert
-
M. Herbster and M. K. Warmuth, “Tracking the Best Expert,” Mach. Learn., vol. 32, no. 2, pp. 151–178, 1998.
-
(1998)
Mach. Learn.
, vol.32
, Issue.2
, pp. 151-178
-
-
Herbster, M.1
Warmuth, M.K.2
-
14
-
-
84881051130
-
Partition tree weighting
-
IEEE Computer Society
-
J. Veness, M. White, M. Bowling, and A. György, “Partition tree weighting,” in Proceedings of the 2013 Data Compression Conference. IEEE Computer Society, 2013, pp. 321–330.
-
(2013)
Proceedings of the 2013 Data Compression Conference
, pp. 321-330
-
-
Veness, J.1
White, M.2
Bowling, M.3
György, A.4
|