-
1
-
-
0030917979
-
Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect
-
Lo, C.P.; Quattrochi, D.A.; Luvall, J.C. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int. J. Remote Sens. 1997, 15, 287-304.
-
(1997)
Int. J. Remote Sens
, vol.15
, pp. 287-304
-
-
Lo, C.P.1
Quattrochi, D.A.2
Luvall, J.C.3
-
2
-
-
33646496591
-
Application of high-resolution stereo satellite images to detailed landslide hazard assessment
-
Nichol, J.E.; Shaker, A.; Wong, M.S. Application of high-resolution stereo satellite images to detailed landslide hazard assessment. Geomorphology 2006, 76, 68-75.
-
(2006)
Geomorphology
, vol.76
, pp. 68-75
-
-
Nichol, J.E.1
Shaker, A.2
Wong, M.S.3
-
3
-
-
15944411251
-
THE APPLICATION OF HIGH RESOLUTION SATELLITE REMOTELY SENSED DATA TO LANDUSE DYNAMIC MONITORING
-
Yang, Q.h.; Qi, J.w.; Sun, Y.j. THE APPLICATION OF HIGH RESOLUTION SATELLITE REMOTELY SENSED DATA TO LANDUSE DYNAMIC MONITORING. Remote Sens. Land Resour. 2001, 4.
-
(2001)
Remote Sens. Land Resour
, pp. 4
-
-
Yang, Q.H.1
Qi, J.W.2
Sun, Y.j.3
-
4
-
-
2942563890
-
High spatial resolution remotely sensed data for ecosystem characterization
-
Wulder, M.A.; Hall, R.J.; Coops, N.C.; Franklin, S.E. High spatial resolution remotely sensed data for ecosystem characterization. BioScience 2004, 54, 511-521.
-
(2004)
BioScience
, vol.54
, pp. 511-521
-
-
Wulder, M.A.1
Hall, R.J.2
Coops, N.C.3
Franklin, S.E.4
-
5
-
-
13944252759
-
Segmentation of high-resolution remotely sensed data-concepts, applications and problems
-
Schiewe, J. Segmentation of high-resolution remotely sensed data-concepts, applications and problems. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 380-385.
-
(2002)
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci
, vol.34
, pp. 380-385
-
-
Schiewe, J.1
-
6
-
-
0037382547
-
Automated analysis of ultra high resolution remote sensing data for biotope type mapping: New possibilities and challenges
-
Ehlers, M.; Gähler, M.; Janowsky, R. Automated analysis of ultra high resolution remote sensing data for biotope type mapping: New possibilities and challenges. ISPRS J. Photogramm. Remote Sens. 2003, 57, 315-326.
-
(2003)
ISPRS J. Photogramm. Remote Sens
, vol.57
, pp. 315-326
-
-
Ehlers, M.1
Gähler, M.2
Janowsky, R.3
-
7
-
-
84861161549
-
Very high-resolution remote sensing: Challenges and opportunities [point of view]
-
Benediktsson, J.A.; Chanussot, J.; Moon, W.M. Very high-resolution remote sensing: Challenges and opportunities [point of view]. Proc. IEEE 2012, 100, 1907-1910.
-
(2012)
Proc. IEEE
, vol.100
, pp. 1907-1910
-
-
Benediktsson, J.A.1
Chanussot, J.2
Moon, W.M.3
-
8
-
-
85042350113
-
A critical review of high and very high-resolution remote sensing approaches for detecting and mapping slums: Trends, challenges and emerging opportunities
-
Mahabir, R.; Croitoru, A.; Crooks, A.; Agouris, P.; Stefanidis, A. A critical review of high and very high-resolution remote sensing approaches for detecting and mapping slums: Trends, challenges and emerging opportunities. Urban Sci. 2018, 2, 8.
-
(2018)
Urban Sci
, vol.2
, pp. 8
-
-
Mahabir, R.1
Croitoru, A.2
Crooks, A.3
Agouris, P.4
Stefanidis, A.5
-
9
-
-
0032208694
-
Building Detection and Description from a Single Intensity Image
-
Lin, C.; Nevatia, R. Building Detection and Description from a Single Intensity Image. Comput. Vis. Image Underst. 1998, 72, 101-121.
-
(1998)
Comput. Vis. Image Underst
, vol.72
, pp. 101-121
-
-
Lin, C.1
Nevatia, R.2
-
11
-
-
0035574093
-
Detection of Buildings from a Single Airborne Image using a Markov Random Field Model
-
Sydney, NSW, Australia, 9-13 July
-
Katartzis, A.; Sahli, H.; Nyssen, E.; Cornelis, J. Detection of Buildings from a Single Airborne Image using a Markov Random Field Model. In Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, NSW, Australia, 9-13 July 2001.
-
(2001)
Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)
-
-
Katartzis, A.1
Sahli, H.2
Nyssen, E.3
Cornelis, J.4
-
13
-
-
34247346536
-
A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery
-
Zhang, L.; Huang, X.; Huang, B.; Li, P. A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2950-2961.
-
(2006)
IEEE Trans. Geosci. Remote Sens
, vol.44
, pp. 2950-2961
-
-
Zhang, L.1
Huang, X.2
Huang, B.3
Li, P.4
-
14
-
-
84899670758
-
BASI: A new index to extract built-up areas from high-resolution remote sensing images by visual attention model
-
Shao, Z.; Tian, Y.; Shen, X. BASI: a new index to extract built-up areas from high-resolution remote sensing images by visual attention model. Remote sensing letters. 2014, Volume 5, 305-314.
-
(2014)
Remote sensing letters
, vol.5
, pp. 305-314
-
-
Shao, Z.1
Tian, Y.2
Shen, X.3
-
15
-
-
33745726893
-
Building extraction from high resolution imagery based on multi-scale object oriented classification and probabilistic Hough transform
-
Seoul, Korea, 25-29 July
-
Liu, Z.; Wang, J.; Liu, W. Building extraction from high resolution imagery based on multi-scale object oriented classification and probabilistic Hough transform. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25-29 July 2005; Volume 4, pp. 2250-2253.
-
(2005)
Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium
, vol.4
, pp. 2250-2253
-
-
Liu, Z.1
Wang, J.2
Liu, W.3
-
16
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, Volume 25, 1097-1105.
-
(2012)
Adv. Neural Inf. Process. Syst
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
17
-
-
84925410541
-
Very deep convolutional networks for large-scale image recognition
-
arXiv:1409.1556
-
Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
-
(2014)
ArXiv
-
-
Simonyan, K.1
Zisserman, A.2
-
18
-
-
84937522268
-
Going deeper with convolutions
-
Boston, MA, USA, 7-12 June
-
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 1-9.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
19
-
-
84986274465
-
Deep residual learning for image recognition
-
Las Vegas, NV, USA, 26 June-1 July
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June-1 July 2016; pp. 770-778.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
20
-
-
85053519750
-
Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification
-
Lv, X.; Ming, D.; Chen, Y.; Wang, M. Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification. Int. J. Remote Sens. 2019, 40, 506-531.
-
(2019)
Int. J. Remote Sens
, vol.40
, pp. 506-531
-
-
Lv, X.1
Ming, D.2
Chen, Y.3
Wang, M.4
-
21
-
-
85068144209
-
Superpixel based land cover classification of VHR satellite image combining multi-scale CNN and scale parameter estimation
-
Chen, Y.; Ming, D.; Lv, X. Superpixel based land cover classification of VHR satellite image combining multi-scale CNN and scale parameter estimation. Earth Sci. Inform. 2019, 1-23.
-
(2019)
Earth Sci. Inform
, pp. 1-23
-
-
Chen, Y.1
Ming, D.2
Lv, X.3
-
22
-
-
85075099977
-
SO-CNN based urban functional zone fine division with VHR remote sensing image
-
Zhou, W.; Ming, D.; Lv, X.; Zhou, K.; Bao, H.; Hong, Z. SO-CNN based urban functional zone fine division with VHR remote sensing image. Remote Sens. Environ. 2020, 236, 111458.
-
(2020)
Remote Sens. Environ
, vol.236
, pp. 111458
-
-
Zhou, W.1
Ming, D.2
Lv, X.3
Zhou, K.4
Bao, H.5
Hong, Z.6
-
23
-
-
85058871481
-
A new method for region-based majority voting CNNs for very high resolution image classification
-
Lv, X.; Ming, D.; Lu, T.; Zhou, K.; Wang, M.; Bao, H. A new method for region-based majority voting CNNs for very high resolution image classification. Remote Sens. 2018, 10, 1946.
-
(2018)
Remote Sens
, vol.10
, pp. 1946
-
-
Lv, X.1
Ming, D.2
Lu, T.3
Zhou, K.4
Wang, M.5
Bao, H.6
-
25
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Boston, MA, USA, 7-12 June
-
Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 3431-3440.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
26
-
-
85033697420
-
Segnet: A deep convolutional encoder-decoder architecture for image segmentation
-
Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481-2495.
-
(2017)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.39
, pp. 2481-2495
-
-
Badrinarayanan, V.1
Kendall, A.2
Cipolla, R.3
-
27
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Springer: Berlin, Germany
-
Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In European Conference on Computer Vision; Springer: Berlin, Germany, 2014; pp. 818-833.
-
(2014)
European Conference on Computer Vision;
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
28
-
-
84951834022
-
U-net: Convolutional networks for biomedical image segmentation
-
Springer: Berlin, Germany
-
Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin, Germany, 2015; pp. 234-241.
-
(2015)
International Conference on Medical Image Computing and Computer-Assisted Intervention;
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
29
-
-
85042712042
-
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
-
Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834-848.
-
(2017)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.40
, pp. 834-848
-
-
Chen, L.C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
30
-
-
85007496838
-
Building extraction from multi-source remote sensing images via deep deconvolution neural networks
-
Beijing, China, 10-15 July
-
Huang, Z.; Cheng, G.; Wang, H.; Li, H.; Shi, L.; Pan, C. Building extraction from multi-source remote sensing images via deep deconvolution neural networks. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, Beijing, China, 10-15 July 2016; pp. 1835-1838.
-
(2016)
Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE
, pp. 1835-1838
-
-
Huang, Z.1
Cheng, G.2
Wang, H.3
Li, H.4
Shi, L.5
Pan, C.6
-
31
-
-
84992121956
-
Convolutional neural networks for large-scale remote-sensing image classification
-
Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 2016, 55, 645-657.
-
(2016)
IEEE Trans. Geosci. Remote Sens
, vol.55
, pp. 645-657
-
-
Maggiori, E.1
Tarabalka, Y.2
Charpiat, G.3
Alliez, P.4
-
32
-
-
85044181374
-
Automatic building segmentation of aerial imagery using multi-constraint fully convolutional networks
-
Wu, G.; Shao, X.; Guo, Z.; Chen, Q.; Yuan, W.; Shi, X.; Xu, Y.; Shibasaki, R. Automatic building segmentation of aerial imagery using multi-constraint fully convolutional networks. Remote Sens. 2018, 10, 407.
-
(2018)
Remote Sens
, vol.10
, pp. 407
-
-
Wu, G.1
Shao, X.2
Guo, Z.3
Chen, Q.4
Yuan, W.5
Shi, X.6
Xu, Y.7
Shibasaki, R.8
-
33
-
-
85029010312
-
High-resolution aerial image labeling with convolutional neural networks
-
Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. High-resolution aerial image labeling with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7092-7103.
-
(2017)
IEEE Trans. Geosci. Remote Sens
, vol.55
, pp. 7092-7103
-
-
Maggiori, E.1
Tarabalka, Y.2
Charpiat, G.3
Alliez, P.4
-
34
-
-
85011384474
-
Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery
-
arXiv:1606.02585
-
Sherrah, J. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. arXiv 2016, arXiv:1606.02585.
-
(2016)
ArXiv
-
-
Sherrah, J.1
-
35
-
-
85040839625
-
Building extraction in very high resolution remote sensing imagery using deep learning and guided filters
-
Xu, Y.; Wu, L.; Xie, Z.; Chen, Z. Building extraction in very high resolution remote sensing imagery using deep learning and guided filters. Remote Sens. 2018, 10, 144.
-
(2018)
Remote Sens
, vol.10
, pp. 144
-
-
Xu, Y.1
Wu, L.2
Xie, Z.3
Chen, Z.4
-
36
-
-
85060452567
-
Rethinking atrous convolution for semantic image segmentation
-
arXiv:1706.05587
-
Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587.
-
(2017)
ArXiv
-
-
Chen, L.C.1
Papandreou, G.2
Schroff, F.3
Adam, H.4
-
37
-
-
85037048973
-
Large Kernel Matters-Improve Semantic Segmentation by Global Convolutional Network
-
Honolulu, HI, USA, 21-26 July
-
Peng, C.; Zhang, X.; Yu, G.; Luo, G.; Sun, J. Large Kernel Matters-Improve Semantic Segmentation by Global Convolutional Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 4353-4361.
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 4353-4361
-
-
Peng, C.1
Zhang, X.2
Yu, G.3
Luo, G.4
Sun, J.5
-
38
-
-
85011298810
-
V-net: Fully convolutional neural networks for volumetric medical image segmentation
-
Stanford, CA, USA, 25-28 October
-
Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV). IEEE, Stanford, CA, USA, 25-28 October 2016; pp. 565-571.
-
(2016)
Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV). IEEE
, pp. 565-571
-
-
Milletari, F.1
Navab, N.2
Ahmadi, S.A.3
-
39
-
-
17444409624
-
A tutorial on the cross-entropy method
-
De Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A tutorial on the cross-entropy method. Ann. Oper. Res. 2005, 134, 19-67.
-
(2005)
Ann. Oper. Res
, vol.134
, pp. 19-67
-
-
de Boer, P.T.1
Kroese, D.P.2
Mannor, S.3
Rubinstein, R.Y.4
-
40
-
-
85041920965
-
Refinenet: Multi-path refinement networks for high-resolution semantic segmentation
-
Honolulu, HI, USA, 21-26 July
-
Lin, G.; Milan, A.; Shen, C.; Reid, I. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 1925-1934.
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1925-1934
-
-
Lin, G.1
Milan, A.2
Shen, C.3
Reid, I.4
-
41
-
-
85040197457
-
Pyramid scene parsing network
-
Honolulu, HI, USA, 21-26 July
-
Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 2881-2890.
-
(2017)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2881-2890
-
-
Zhao, H.1
Shi, J.2
Qi, X.3
Wang, X.4
Jia, J.5
-
42
-
-
85048372713
-
Encoder-decoder with atrous separable convolution for semantic image segmentation
-
Munich, Germany, 8-14 September
-
Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8-14 September 2018; pp. 801-818.
-
(2018)
Proceedings of the European Conference on Computer Vision (ECCV)
, pp. 801-818
-
-
Chen, L.C.1
Zhu, Y.2
Papandreou, G.3
Schroff, F.4
Adam, H.5
-
43
-
-
85038620511
-
Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark
-
Fort Worth, TX, USA, 23-28 July
-
Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, Fort Worth, TX, USA, 23-28 July 2017; pp. 3226-3229.
-
(2017)
Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE
, pp. 3226-3229
-
-
Maggiori, E.1
Tarabalka, Y.2
Charpiat, G.3
Alliez, P.4
|