메뉴 건너뛰기




Volumn , Issue , 2012, Pages 595-615

Parallel and Distributed Data Mining for Astronomy Applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85081817574     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b11822-21     Document Type: Chapter
Times cited : (1)

References (85)
  • 2
    • 84861482278 scopus 로고    scopus 로고
    • Papyrus: A system for data mining over local and wide area clusters and super-clusters
    • New York, USA
    • S. Bailey, R. Grossman, H. Sivakumar, and A. Turinsky. Papyrus: A system for data mining over local and wide area clusters and super-clusters. In Proceedings of CDROM’99, p. 63, New York, USA, 1999.
    • (1999) Proceedings of CDROM’99 , pp. 63
    • Bailey, S.1    Grossman, R.2    Sivakumar, H.3    Turinsky, A.4
  • 7
    • 61449179121 scopus 로고    scopus 로고
    • A scalable local algorithm for distributed multivariate regression
    • K. Bhaduri and H. Kargupta. A scalable local algorithm for distributed multivariate regression. Statistical Analysis and Data Mining J., 1(3):177-194, 2008.
    • (2008) Statistical Analysis and Data Mining J. , vol.1 , Issue.3 , pp. 177-194
    • Bhaduri, K.1    Kargupta, H.2
  • 8
    • 77951152706 scopus 로고    scopus 로고
    • A local scalable distributed expectation maximization algorithm for large peer-to-peer networks
    • Miami, Florida, USA
    • K. Bhaduri and A. N. Srivastava. A local scalable distributed expectation maximization algorithm for large peer-to-peer networks. In Proceedings of ICDM’09, pp. 31-40, Miami, Florida, USA, 2009.
    • (2009) Proceedings of ICDM’09 , pp. 31-40
    • Bhaduri, K.1    Srivastava, A.N.2
  • 11
    • 78349233459 scopus 로고    scopus 로고
    • Scientific data mining in astronomy
    • H. Kargupta, J. Han, P. S. Yu, R. Motwani, and V. Kumar, editors, Chapter 5, CRC Press, Boca Raton, FL
    • K. Borne. Scientific data mining in astronomy. In H. Kargupta, J. Han, P. S. Yu, R. Motwani, and V. Kumar, editors, Next Generation of Data Mining, Chapter 5, pp. 91-114. CRC Press, Boca Raton, FL, 2009.
    • (2009) Next Generation of Data Mining , pp. 91-114
    • Borne, K.1
  • 13
    • 25844517631 scopus 로고    scopus 로고
    • Gossip algorithms: Design, analysis and applications
    • Miami, FL, March
    • S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms: Design, analysis and applications. In Proceedings of Infocom’05, pp. 1653-1664, Miami, FL, March 2005.
    • (2005) Proceedings of Infocom’05 , pp. 1653-1664
    • Boyd, S.1    Ghosh, A.2    Prabhakar, B.3    Shah, D.4
  • 16
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 18
    • 2442565134 scopus 로고    scopus 로고
    • Handbook of massive data sets
    • J. Abello, P. M. Pardalos, and M. G. C. Resende, editors, Kluwer Academic Publishers, Norwell, MA, USA
    • R. Brunner, G. Djorgovski, T. Prince, and A. Szalay. Handbook of massive data sets. In J. Abello, P. M. Pardalos, and M. G. C. Resende, editors, Massive Datasets in Astronomy, pp. 931-979. Kluwer Academic Publishers, Norwell, MA, USA, 2002.
    • (2002) Massive Datasets in Astronomy , pp. 931-979
    • Brunner, R.1    Djorgovski, G.2    Prince, T.3    Szalay, A.4
  • 20
    • 19544373409 scopus 로고    scopus 로고
    • A framework for learning from distributed data using sufficient statistics and its application to learning decision trees
    • D. Caragea, A. Silvescu, and V. Honavar. A framework for learning from distributed data using sufficient statistics and its application to learning decision trees. International Journal of Hybrid Intelligent Systems, 1(1-2):80-89, 2004.
    • (2004) International Journal of Hybrid Intelligent Systems , vol.1 , Issue.1-2 , pp. 80-89
    • Caragea, D.1    Silvescu, A.2    Honavar, V.3
  • 24
    • 85132067551 scopus 로고    scopus 로고
    • Collective mining of bayesian networks from distributed heterogeneous data
    • R. Chen, K. Sivakumar, and H. Kargupta. Collective mining of bayesian networks from distributed heterogeneous data. Knowledge and Information Systems, 6(2):164-187, 2004.
    • (2004) Knowledge and Information Systems , vol.6 , Issue.2 , pp. 164-187
    • Chen, R.1    Sivakumar, K.2    Kargupta, H.3
  • 26
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hastings algorithm
    • S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algorithm. The American Statistician, 49(4):327-335, 1995.
    • (1995) The American Statistician , vol.49 , Issue.4 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 29
    • 84893347805 scopus 로고    scopus 로고
    • PADMINI: A peer-to-peer distributed astronomy data mining system and a case study
    • T. Mahule, K. D. Borne, S. Dey, S. Arora, and H. Kargupta. PADMINI: A peer-to-peer distributed astronomy data mining system and a case study. CIDU, 243-257, 2010.
    • (2010) CIDU , pp. 243-257
    • Mahule, T.1    Borne, K.D.2    Dey, S.3    Arora, S.4    Kargupta, H.5
  • 30
    • 40349093215 scopus 로고    scopus 로고
    • Distributed identification of top-l inner product elements and its application in a peer-to-peer network
    • K. Das, K. Bhaduri, K. Liu, and H. Kargupta. Distributed identification of top-l inner product elements and its application in a peer-to-peer network. IEEE Transactions on Knowledge and Data Engineering (TKDE), 20(4):475-488, 2008.
    • (2008) IEEE Transactions on Knowledge and Data Engineering (TKDE) , vol.20 , Issue.4 , pp. 475-488
    • Das, K.1    Bhaduri, K.2    Liu, K.3    Kargupta, H.4
  • 31
    • 85138363374 scopus 로고    scopus 로고
    • The DataGrid Project. http://eu-datagrid.web.cern.ch/eu-datagrid/default.htm.
  • 33
    • 33745479072 scopus 로고    scopus 로고
    • K-Means clustering over large, dynamic networks
    • Maryland
    • S. Datta, C. Giannella, and H. Kargupta. K-Means clustering over large, dynamic networks. In Proceedings of SDM’06, pp. 153-164, Maryland, 2006.
    • (2006) Proceedings of SDM’06 , pp. 153-164
    • Datta, S.1    Giannella, C.2    Kargupta, H.3
  • 34
    • 0002546287 scopus 로고
    • Efficient algorithms for agglomerative hierarchical clustering methods
    • W. Day and H. Edelsbrunner. Efficient algorithms for agglomerative hierarchical clustering methods. Journal of Classification, 1:7-24, 1984.
    • (1984) Journal of Classification , vol.1 , pp. 7-24
    • Day, W.1    Edelsbrunner, H.2
  • 35
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. Commun. ACM, 51:107-113, 2008.
    • (2008) Commun. ACM , vol.51 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 37
    • 70349253476 scopus 로고    scopus 로고
    • Distributed top-K outlier detection from astronomy catalogs using the DEMAC system
    • H. Dutta, C. Giannella, K. D. Borne, and H. Kargupta. Distributed top-K outlier detection from astronomy catalogs using the DEMAC system. In SDM, 2007.
    • (2007) SDM
    • Dutta, H.1    Giannella, C.2    Borne, K.D.3    Kargupta, H.4
  • 38
    • 28844433802 scopus 로고    scopus 로고
    • Classifying documents by distributed P2P clustering
    • M. Eisenhardt, W. Müller, and A. Henrich. Classifying documents by distributed P2P clustering. In GI Jahrestagung, pp. 286-291, 2003.
    • (2003) GI Jahrestagung , pp. 286-291
    • Eisenhardt, M.1    Müller, W.2    Henrich, A.3
  • 40
    • 33845229615 scopus 로고    scopus 로고
    • Data clustering using evidence accumulation
    • Washington, DC, USA
    • A. Fred and A. Jain. Data clustering using evidence accumulation. In Proceedings of ICPR’02, p. 40276, Washington, DC, USA, 2002.
    • (2002) Proceedings of ICPR’02 , pp. 40276
    • Fred, A.1    Jain, A.2
  • 41
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 38(2):337-374, 2000.
    • (2000) The Annals of Statistics , vol.38 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 42
    • 85138370411 scopus 로고    scopus 로고
    • The Galaxy Evolution Explorer
    • The Galaxy Evolution Explorer. http://www.galex.caltech.edu/about/overview.html.
  • 45
    • 19544380393 scopus 로고    scopus 로고
    • Communication efficient construction of deicision trees over heterogeneously distributed data
    • Brighton, UK
    • C. Giannella, K. Liu, T. Olsen, and H. Kargupta. Communication efficient construction of deicision trees over heterogeneously distributed data. In Proceedings of ICDM’04, pp. 67-74, Brighton, UK, 2004.
    • (2004) Proceedings of ICDM’04 , pp. 67-74
    • Giannella, C.1    Liu, K.2    Olsen, T.3    Kargupta, H.4
  • 46
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed. Johns Hopkins University Press, Baltimore, MD, USA
    • G. Golub and C. Van Loan. Matrix Computations, 3rd ed. Johns Hopkins University Press, Baltimore, MD, USA, 1996.
    • (1996) Matrix Computations
    • Golub, G.1    Van Loan, C.2
  • 47
    • 85138373378 scopus 로고    scopus 로고
    • What is grid?
    • What is grid? http://www.eu-degree.eu/DEGREE/General%\20questions/copy_of_what-isgrid.
  • 48
    • 85138405183 scopus 로고    scopus 로고
    • GRIST: Grid data mining for astronomy
    • GRIST: Grid data mining for astronomy. http://grist.caltech.edu/index.html.
  • 50
    • 0346250708 scopus 로고    scopus 로고
    • Distributed multivariate regression using wavelet-based collective data mining
    • D. E. Hershberger and H. Kargupta. Distributed multivariate regression using wavelet-based collective data mining. Journal of Parallel and Distributed Computing, 61(3):372-400, 2001.
    • (2001) Journal of Parallel and Distributed Computing , vol.61 , Issue.3 , pp. 372-400
    • Hershberger, D.E.1    Kargupta, H.2
  • 51
    • 0033720551 scopus 로고    scopus 로고
    • Data mining on NASA’s information power grid
    • Pittsburgh, PA, USA
    • T. Hinke and J. Novotny. Data mining on NASA’s information power grid. In Proceedings of HPDC’00, p. 292, Pittsburgh, PA, USA, 2000.
    • (2000) Proceedings of HPDC’00 , pp. 292
    • Hinke, T.1    Novotny, J.2
  • 53
    • 85138363518 scopus 로고    scopus 로고
    • JADE: Java Agent DEvelopment Framework. http://jade.tilab.com/.
  • 55
    • 76249109489 scopus 로고    scopus 로고
    • Communication and memory efficient parallel decision tree construction
    • San Francisco, CA
    • R. Jin and G. Agrawal. Communication and memory efficient parallel decision tree construction. In SDM, pp. 119-129, San Francisco, CA, 2003.
    • (2003) SDM , pp. 119-129
    • Jin, R.1    Agrawal, G.2
  • 57
    • 85138346465 scopus 로고    scopus 로고
    • JXTA: Open source peer-to-peer protocol. https://jxta.dev.java.net/.
  • 58
    • 0001282382 scopus 로고    scopus 로고
    • Collecttive data mining: A new perspective towards distributed data mining
    • H. Kargupta and P. Chan, editors, AAAI/MIT Press, Cambridge, MA, USA
    • H. Kargupta, B. Park, D. Hershbereger, and E. Johnson. Collecttive data mining: A new perspective towards distributed data mining. In H. Kargupta and P. Chan, editors, Advances in Distributed and Parallel Knowledge Discovery. AAAI/MIT Press, pp. 133-184, Cambridge, MA, USA, 1999.
    • (1999) Advances in Distributed and Parallel Knowledge Discovery , pp. 133-184
    • Kargupta, H.1    Park, B.2    Hershbereger, D.3    Johnson, E.4
  • 63
    • 4544320214 scopus 로고    scopus 로고
    • A decentralized algorithm for spectral analysis
    • Chicago, IL, USA
    • D. Kempe and F. McSherry. A decentralized algorithm for spectral analysis. In Proceedings of STOC’04, pp. 561-568, Chicago, IL, USA, 2004.
    • (2004) Proceedings of STOC’04 , pp. 561-568
    • Kempe, D.1    McSherry, F.2
  • 65
    • 84880800384 scopus 로고    scopus 로고
    • Distributed clustering based on sampling local density estimates
    • Mexico, August
    • M. Klusch, S. Lodi, and G. L. Moro. Distributed clustering based on sampling local density estimates. In Proceedings of IJCAI’03, pp. 485-490, Mexico, August 2003.
    • (2003) Proceedings of IJCAI’03 , pp. 485-490
    • Klusch, M.1    Lodi, S.2    Moro, G.L.3
  • 66
    • 33646130892 scopus 로고    scopus 로고
    • Towards data mining in large and fully distributed peer-to-peer overlay networks
    • University of Nijmegen, Nijmegen, Netherlands
    • W. Kowalczyk, M. Jelasity, and A. E. Eiben. Towards data mining in large and fully distributed peer-to-peer overlay networks. In Proceedings of BNAIC’03, pp. 203-210, University of Nijmegen, Nijmegen, Netherlands, 2003.
    • (2003) Proceedings of BNAIC’03 , pp. 203-210
    • Kowalczyk, W.1    Jelasity, M.2    Eiben, A.E.3
  • 67
    • 35348989678 scopus 로고    scopus 로고
    • A local facility location algorithm for large-scale distributed systems
    • D. Krivitski, A. Schuster, and R. Wolff. A local facility location algorithm for large-scale distributed systems. Journal of Grid Computing, 5(4):361-378, 2007.
    • (2007) Journal of Grid Computing , vol.5 , Issue.4 , pp. 361-378
    • Krivitski, D.1    Schuster, A.2    Wolff, R.3
  • 68
    • 0003307144 scopus 로고    scopus 로고
    • Distributed clustering and local regression for knowledge discovery in multiple spatial databases
    • Bruges, Belgium, April
    • A. Lazarevic, D. Pokrajac, and Z. Obradovic. Distributed clustering and local regression for knowledge discovery in multiple spatial databases. In Proceedings of ESANN’00, pp. 129-134, Bruges, Belgium, April 2000.
    • (2000) Proceedings of ESANN’00 , pp. 129-134
    • Lazarevic, A.1    Pokrajac, D.2    Obradovic, Z.3
  • 69
    • 31344447750 scopus 로고    scopus 로고
    • Random projection-based multiplicative data perturbation for privacy preserving distributed data mining
    • K. Liu, H. Kargupta, and J. Ryan. Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE Transactions on Knowledge and Data Engineering, 18:92-106, 2006.
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , pp. 92-106
    • Liu, K.1    Kargupta, H.2    Ryan, J.3
  • 70
    • 85138326157 scopus 로고    scopus 로고
    • LSST: Large Synoptic Survey Telescope. http://www.lsst.org/lsst.
  • 71
    • 36849051408 scopus 로고    scopus 로고
    • Distributed classification in peer-to-peer networks
    • San Jose, CA, USA
    • P. Luo, H. Xiong, K. Lü, and Z. Shi. Distributed classification in peer-to-peer networks. In Proceedings of SIGKDD’07, pp. 968-976, San Jose, CA, USA, 2007.
    • (2007) Proceedings of SIGKDD’07 , pp. 968-976
    • Luo, P.1    Xiong, H.2    Lü, K.3    Shi, Z.4
  • 74
    • 0029358115 scopus 로고
    • Parallel algorithms for hierarchical clustering
    • C. F. Olson. Parallel algorithms for hierarchical clustering. Parallel Computing, 21:1313-1325, 1995.
    • (1995) Parallel Computing , vol.21 , pp. 1313-1325
    • Olson, C.F.1
  • 76
    • 0036167376 scopus 로고    scopus 로고
    • Distributed, collaborative data analysis from heterogeneous sites using a scalable evolutionary technique
    • B. Park, H. Kargupta, E. Johnson, E. Sanseverino, D. Hershberger, and L. Silvestre. Distributed, collaborative data analysis from heterogeneous sites using a scalable evolutionary technique. Applied Intelligence, 16(1):19-42, 2002.
    • (2002) Applied Intelligence , vol.16 , Issue.1 , pp. 19-42
    • Park, B.1    Kargupta, H.2    Johnson, E.3    Sanseverino, E.4    Hershberger, D.5    Silvestre, L.6
  • 77
    • 85138332400 scopus 로고    scopus 로고
    • The Röntgen Satellite. http://heasarc.gsfc.nasa.gov/docs/rosat/rosgof.html.
  • 79
    • 0030646927 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • San Juan, Puerto Rico
    • J. Shi and J. Malik. Normalized cuts and image segmentation. In Proceedings of CVPR’97, p. 731, San Juan, Puerto Rico, 1997.
    • (1997) Proceedings of CVPR’97 , pp. 731
    • Shi, J.1    Malik, J.2
  • 81
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-A knowledge reuse framework for combining multiple partitions
    • A. Strehl and J. Ghosh. Cluster ensembles-A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3:583-617, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 82
    • 61449201993 scopus 로고    scopus 로고
    • A generic local algorithm for mining data streams in large distributed systems
    • R. Wolff, K. Bhaduri, and H. Kargupta. A generic local algorithm for mining data streams in large distributed systems. TKDE, 21(4):465-478, 2009.
    • (2009) TKDE , vol.21 , Issue.4 , pp. 465-478
    • Wolff, R.1    Bhaduri, K.2    Kargupta, H.3
  • 84
    • 0033354342 scopus 로고    scopus 로고
    • Parallel and distributed association mining: A survey
    • M. J. Zaki. Parallel and distributed association mining: a survey. IEEEConcurrency, 7(4):14-25, 1999.
    • (1999) IEEEConcurrency , vol.7 , Issue.4 , pp. 14-25
    • Zaki, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.