메뉴 건너뛰기




Volumn 48, Issue 2, 2020, Pages 137-141

Too Many Definitions of Sepsis: Can Machine Learning Leverage the Electronic Health Record to Increase Accuracy and Bring Consensus?

Author keywords

electronic data processing; electronic health records; informatics; machine learning; sepsis; severe sepsis

Indexed keywords

ELECTRONIC HEALTH RECORD; HEALTH STATUS INDICATOR; HUMAN; MACHINE LEARNING; PATHOPHYSIOLOGY; REPRODUCIBILITY; SEPSIS;

EID: 85077861705     PISSN: 00903493     EISSN: 15300293     Source Type: Journal    
DOI: 10.1097/CCM.0000000000004144     Document Type: Editorial
Times cited : (22)

References (16)
  • 1
    • 85056577940 scopus 로고    scopus 로고
    • Epidemiology and costs of sepsis in the United States-An analysis based on timing of diagnosis and severity level
    • Paoli CJ, Reynolds MA, Sinha M,. Epidemiology and costs of sepsis in the United States-An analysis based on timing of diagnosis and severity level. Crit Care Med 2018; 46: 1889-1897
    • (2018) Crit Care Med , vol.46 , pp. 1889-1897
    • Paoli, C.J.1    Reynolds, M.A.2    Sinha, M.3
  • 2
    • 84959317195 scopus 로고    scopus 로고
    • Assessment of clinical criteria for sepsis: For the third international consensus definitions for sepsis and septic shock (sepsis-3)
    • Seymour CW, Liu VX, Iwashyna TJ,. Assessment of clinical criteria for sepsis: For the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016; 315: 762-774
    • (2016) Jama , vol.315 , pp. 762-774
    • Seymour, C.W.1    Liu, V.X.2    Iwashyna, T.J.3
  • 3
    • 84959350250 scopus 로고    scopus 로고
    • A framework for the development and interpretation of different sepsis definitions and clinical criteria
    • Angus DC, Seymour CW, Coopersmith CM,. A framework for the development and interpretation of different sepsis definitions and clinical criteria. Crit Care Med 2016; 44: e113-e121
    • (2016) Crit Care Med , vol.44 , pp. e113-e121
    • Angus, D.C.1    Seymour, C.W.2    Coopersmith, C.M.3
  • 4
    • 84959337301 scopus 로고    scopus 로고
    • Application of a framework to assess the usefulness of alternative sepsis criteria
    • Seymour CW, Coopersmith CM, Deutschman CS,. Application of a framework to assess the usefulness of alternative sepsis criteria. Crit Care Med 2016; 44: e122-e130
    • (2016) Crit Care Med , vol.44 , pp. e122-e130
    • Seymour, C.W.1    Coopersmith, C.M.2    Deutschman, C.S.3
  • 5
    • 84959273475 scopus 로고    scopus 로고
    • The third international consensus definitions for sepsis and septic shock (sepsis-3)
    • Singer M, Deutschman CS, Seymour CW,. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016; 315: 801-810
    • (2016) Jama , vol.315 , pp. 801-810
    • Singer, M.1    Deutschman, C.S.2    Seymour, C.W.3
  • 6
    • 85053915398 scopus 로고    scopus 로고
    • Using objective clinical data to track progress on preventing and treating sepsis: CDC's new 'Adult Sepsis Event' surveillance strategy
    • Rhee C, Dantes RB, Epstein L,. Using objective clinical data to track progress on preventing and treating sepsis: CDC's new 'Adult Sepsis Event' surveillance strategy. BMJ Qual Saf 2019; 28: 305-309
    • (2019) Bmj Qual Saf , vol.28 , pp. 305-309
    • Rhee, C.1    Dantes, R.B.2    Epstein, L.3
  • 7
    • 0037396875 scopus 로고    scopus 로고
    • 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference
    • International Sepsis Definitions Conference
    • Levy MM, Fink MP, Marshall JC, International Sepsis Definitions Conference: 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Intensive Care Med 2003; 29: 530-538
    • (2003) Intensive Care Med , vol.29 , pp. 530-538
    • Levy, M.M.1    Fink, M.P.2    Marshall, J.C.3
  • 8
    • 85083835198 scopus 로고    scopus 로고
    • Comparison of automated sepsis identification methods and electronic health record-based sepsis phenotyping: Improving case identification accuracy by accounting for confounding comorbid conditions
    • Henry KE, Hager DN, Osborn TM,. Comparison of automated sepsis identification methods and electronic health record-based sepsis phenotyping: Improving case identification accuracy by accounting for confounding comorbid conditions. Crit Care Explor 2019; 1: e0053
    • (2019) Crit Care Explor , vol.1 , pp. e0053
    • Henry, K.E.1    Hager, D.N.2    Osborn, T.M.3
  • 9
    • 0034958947 scopus 로고    scopus 로고
    • Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care
    • Angus DC, Linde-Zwirble WT, Lidicker J,. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29: 1303-1310
    • (2001) Crit Care Med , vol.29 , pp. 1303-1310
    • Angus, D.C.1    Linde-Zwirble, W.T.2    Lidicker, J.3
  • 10
    • 85058554228 scopus 로고    scopus 로고
    • Variation in identifying sepsis and organ dysfunction using administrative versus electronic clinical data and impact on hospital outcome comparisons
    • Rhee C, Jentzsch MS, Kadri SS,. Variation in identifying sepsis and organ dysfunction using administrative versus electronic clinical data and impact on hospital outcome comparisons. Crit Care Med 2018; 1: 493-500
    • (2018) Crit Care Med , vol.1 , pp. 493-500
    • Rhee, C.1    Jentzsch, M.S.2    Kadri, S.S.3
  • 11
    • 85021806483 scopus 로고    scopus 로고
    • New sepsis and septic shock definitions: Clinical implications and controversies
    • Rhee C, Klompas M,. New sepsis and septic shock definitions: Clinical implications and controversies. Infect Dis Clin North Am 2017; 31: 397-413
    • (2017) Infect Dis Clin North Am , vol.31 , pp. 397-413
    • Rhee, C.1    Klompas, M.2
  • 12
    • 85061178889 scopus 로고    scopus 로고
    • Variability in determining sepsis time zero and bundle compliance rates for the centers for medicare and medicaid services SEP-1 measure
    • CDC Prevention Epicenters Program
    • Rhee C, Brown SR, Jones TM, CDC Prevention Epicenters Program: Variability in determining sepsis time zero and bundle compliance rates for the centers for medicare and medicaid services SEP-1 measure. Infect Control Hosp Epidemiol 2018; 39: 994-996
    • (2018) Infect Control Hosp Epidemiol , vol.39 , pp. 994-996
    • Rhee, C.1    Brown, S.R.2    Jones, T.M.3
  • 13
    • 84938704873 scopus 로고    scopus 로고
    • A targeted real-Time early warning score (TREWScore) for septic shock
    • Henry KE, Hager DN, Pronovost PJ,. A targeted real-Time early warning score (TREWScore) for septic shock. Sci Transl Med 2015; 7: 299ra122.
    • (2015) Sci Transl Med , vol.7 , pp. 299ra122
    • Henry, K.E.1    Hager, D.N.2    Pronovost, P.J.3
  • 14
    • 85065296172 scopus 로고    scopus 로고
    • To catch a killer: Electronic sepsis alert tools reaching a fever pitch?
    • Ruppel H, Liu V,. To catch a killer: Electronic sepsis alert tools reaching a fever pitch? BMJ Qual Saf 2019; 28: 693-696
    • (2019) Bmj Qual Saf , vol.28 , pp. 693-696
    • Ruppel, H.1    Liu, V.2
  • 15
    • 85059499381 scopus 로고    scopus 로고
    • Can septic shock be identified early? Evaluating performance of a targeted real-Time early warning score (trewscore) for septic shock in a community hospital: Global and subpopulation performance
    • Henry K, Wongvibulsin S, Zhan A,. Can septic shock be identified early? Evaluating performance of a targeted real-Time early warning score (trewscore) for septic shock in a community hospital: Global and subpopulation performance. Am J Respir Crit Care Med 2017; 195: A7016
    • (2017) Am J Respir Crit Care Med , vol.195 , pp. A7016
    • Henry, K.1    Wongvibulsin, S.2    Zhan, A.3
  • 16
    • 85028517618 scopus 로고    scopus 로고
    • Scalable joint models for reliable uncertainty-Aware event prediction
    • Soleimani H, Hensman J, Saria S,. Scalable joint models for reliable uncertainty-Aware event prediction. IEEE Trans Pattern Anal Mach Intell 2018; 40: 1948-1963
    • (2018) Ieee Trans Pattern Anal Mach Intell , vol.40 , pp. 1948-1963
    • Soleimani, H.1    Hensman, J.2    Saria, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.