메뉴 건너뛰기




Volumn , Issue , 2007, Pages 251-275

Reinforcement Agents for E-Learning Applications

Author keywords

Learning Object; Markov Decision Process; Multiagent System; Partially Observable Markov Decision Process; Reinforcement Agent

Indexed keywords


EID: 85076593059     PISSN: 16103947     EISSN: 21978441     Source Type: Book Series    
DOI: 10.1007/978-1-84628-758-9_9     Document Type: Chapter
Times cited : (3)

References (39)
  • 3
    • 84899032145 scopus 로고    scopus 로고
    • All learning is local: Multi-agent learning in global reward games, Advances in Neural Information Processing Systems 16
    • Chang, Y.H., Ho, T., Kaelbling, L.P. (2004) All learning is local: Multi-agent learning in global reward games, Advances in Neural Information Processing Systems 16, Vancouver, (NIPS-03).
    • (2004) Vancouver
    • Chang, Y.H.1    Ho, T.2    Kaelbling, L.P.3
  • 6
    • 85040789943 scopus 로고    scopus 로고
    • Department of Computer Science, University of British Columbia, Vancouver, Canada Computer Science Division, University of California Berkeley
    • Dearden, R., Friedman, N., Russell, S. (1998) Bayesian Q-learning, Department of Computer Science, University of British Columbia, Vancouver, Canada Computer Science Division, University of California Berkeley.
    • (1998) Bayesian Q-Learning
    • Dearden, R.1    Friedman, N.2    Russell, S.3
  • 11
    • 85078215532 scopus 로고    scopus 로고
    • Mixed-Initiative Interaction, IEEE Intelligence Systems, September/October
    • Hearst, M.A. (1999) Trends & Controversies, Mixed-Initiative Interaction, IEEE Intelligence Systems, September/October.
    • (1999) Trends & Controversies
    • Hearst, M.A.1
  • 14
  • 15
  • 17
    • 17444405333 scopus 로고    scopus 로고
    • Hidden Markov models with states depending on observations source, Pattern Recognition Letters Archive, New York
    • Li, Y. (2005) Hidden Markov models with states depending on observations source, Pattern Recognition Letters Archive, New York, NY: Elsevier Science Inc. 26(7): 977– 984.
    • (2005) NY: Elsevier Science Inc. , vol.26 , Issue.7 , pp. 977-984
    • Li, Y.1
  • 19
    • 0141819580 scopus 로고    scopus 로고
    • PEGASUS: A policy search method for large MDPs and POMDPs
    • UAI), Proceedinjgs of the Sixteenth Conference
    • Ng, A.Y., Jordan, M.I. (2000) PEGASUS: A policy search method for large MDPs and POMDPs, Uncertainty in artificial intelligence (UAI), Proceedinjgs of the Sixteenth Conference.
    • (2000) Uncertainty in Artificial Intelligence
    • Ng, A.Y.1    Jordan, M.I.2
  • 20
    • 85078084757 scopus 로고    scopus 로고
    • POMDPs for Dummies, Subtitled: POMDPs and Their Algorithms, Sans Formula!
    • Online Tutorial, Brown University, Department of Computer Science, POMDPs for Dummies, Subtitled: POMDPs and Their Algorithms, Sans Formula!, http://www.cs.brown.edu/research/ai/pomdp/tutorial/index.html.
    • Online Tutorial, Brown University, Department of Computer Science
  • 30
    • 0003631802 scopus 로고    scopus 로고
    • Massachusetts Institute of Technology, Artificial Intelligence Laboratory and Center for Biological and Computational Learning, Department of Brain and Cognitive Science
    • Smyth, P., Heckerman, D., Jordan, M. (1996) Probabilistic Independence Networks for Hidden Markov Models, Massachusetts Institute of Technology, Artificial Intelligence Laboratory and Center for Biological and Computational Learning, Department of Brain and Cognitive Science.
    • (1996) Probabilistic Independence Networks for Hidden Markov Models
    • Smyth, P.1    Heckerman, D.2    Jordan, M.3
  • 33
    • 5444243723 scopus 로고    scopus 로고
    • A Framework for the initialization of student models in Web-based intelligent tutoring systems
    • Tsiriga, V., Virvou, M. (2004) A Framework for the initialization of student models in Web-based intelligent tutoring systems. User Modeling and User-Adapted Interaction, 14:289–316.
    • (2004) User Modeling and User-Adapted Interaction , vol.14 , pp. 289-316
    • Tsiriga, V.1    Virvou, M.2
  • 34
    • 14344279109 scopus 로고    scopus 로고
    • An Application of Reinforcement Learning to Dialogue Strategy Selection in a Spoken Dialogue System for Email
    • Walker, M.A. (2000) An Application of Reinforcement Learning to Dialogue Strategy Selection in a Spoken Dialogue System for Email, Journal of Artificial Intelligence Research (JAIR), 12:387–416.
    • (2000) Journal of Artificial Intelligence Research (JAIR) , vol.12 , pp. 387-416
    • Walker, M.A.1
  • 36
  • 37
    • 0003504917 scopus 로고    scopus 로고
    • Hierarchical Optimization of Policy-Coupled Semi-Markov Decision Processes
    • Bled, Slovenia, June 27–30. (nominated for best paper award at ICML-99)
    • Wang, G., Mahadevan, S. (1999) Hierarchical Optimization of Policy-Coupled Semi-Markov Decision Processes, Proceeding of the 16th International Conference on Machine Learning (ICML ’99), Bled, Slovenia, June 27–30. (nominated for best paper award at ICML-99).
    • (1999) Proceeding of the 16Th International Conference on Machine Learning (ICML ’99)
    • Wang, G.1    Mahadevan, S.2
  • 38
    • 0036644611 scopus 로고    scopus 로고
    • Maximum entropy-based optimal threshold selection using deterministic reinforcement learning with controlled randomization
    • Yin, P.Y. (2002) Maximum entropy-based optimal threshold selection using deterministic reinforcement learning with controlled randomization. Signal Processing 82:993– 1006.
    • (2002) Signal Processing , vol.82 , pp. 993-1006
    • Yin, P.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.